PIGF
From Wikipedia, the free encyclopedia
Phosphatidylinositol glycan anchor biosynthesis, class F
|
||||||||||||||
Identifiers | ||||||||||||||
Symbol(s) | PIGF; MGC32646; MGC33136 | |||||||||||||
External IDs | OMIM: 600153 MGI: 99462 HomoloGene: 31103 | |||||||||||||
|
||||||||||||||
RNA expression pattern | ||||||||||||||
Orthologs | ||||||||||||||
Human | Mouse | |||||||||||||
Entrez | 5281 | 18701 | ||||||||||||
Ensembl | ENSG00000151665 | ENSMUSG00000024145 | ||||||||||||
Uniprot | Q07326 | Q3V0Z0 | ||||||||||||
Refseq | NM_002643 (mRNA) NP_002634 (protein) |
NM_008838 (mRNA) NP_032864 (protein) |
||||||||||||
Location | Chr 2: 46.66 - 46.7 Mb | Chr 17: 86.91 - 86.93 Mb | ||||||||||||
Pubmed search | [1] | [2] |
Phosphatidylinositol glycan anchor biosynthesis, class F, also known as PIGF, is a human gene.[1]
This gene encodes a protein that is involved in glycosylphosphatidylinositol (GPI)-anchor biosynthesis. The GPI-anchor is a glycolipid which contains three mannose molecules in its core backbone. The GPI-anchor is found on many blood cells and serves to anchor proteins to the cell surface. This protein and another GPI synthesis protein, PIGO, function in the transfer of ethanolaminephosphate (EtNP) to the third mannose in GPI. At least two alternatively spliced transcripts encoding distinct isoforms have been found for this gene.[1]
[edit] References
[edit] Further reading
- Kinoshita T, Takahashi M, Inoue N, et al. (1994). "Expression cloning of genes for GPI-anchor biosynthesis.". Braz. J. Med. Biol. Res. 27 (2): 127–32. PMID 8081220.
- Inoue N, Kinoshita T, Orii T, Takeda J (1993). "Cloning of a human gene, PIG-F, a component of glycosylphosphatidylinositol anchor biosynthesis, by a novel expression cloning strategy.". J. Biol. Chem. 268 (10): 6882–5. PMID 8463218.
- Ohishi K, Inoue N, Endo Y, et al. (1996). "Structure and chromosomal localization of the GPI-anchor synthesis gene PIGF and its pseudogene psi PIGF.". Genomics 29 (3): 804–7. doi: . PMID 8575782.
- Hong Y, Maeda Y, Watanabe R, et al. (2000). "Requirement of PIG-F and PIG-O for transferring phosphoethanolamine to the third mannose in glycosylphosphatidylinositol.". J. Biol. Chem. 275 (27): 20911–9. doi: . PMID 10781593.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi: . PMID 12477932.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi: . PMID 15489334.
- Shishioh N, Hong Y, Ohishi K, et al. (2005). "GPI7 is the second partner of PIG-F and involved in modification of glycosylphosphatidylinositol.". J. Biol. Chem. 280 (10): 9728–34. doi: . PMID 15632136.
- Li W, Shen W, Gill R, et al. (2006). "High-resolution quantitative computed tomography demonstrating selective enhancement of medium-size collaterals by placental growth factor-1 in the mouse ischemic hindlimb.". Circulation 113 (20): 2445–53. doi: . PMID 16702473.
- Yano K, Liaw PC, Mullington JM, et al. (2006). "Vascular endothelial growth factor is an important determinant of sepsis morbidity and mortality.". J. Exp. Med. 203 (6): 1447–58. doi: . PMID 16702604.
- Zheng Y, Murakami M, Takahashi H, et al. (2006). "Chimeric VEGF-E(NZ7)/PlGF promotes angiogenesis via VEGFR-2 without significant enhancement of vascular permeability and inflammation.". Arterioscler. Thromb. Vasc. Biol. 26 (9): 2019–26. doi: . PMID 16794222.
- Mohammed KA, Nasreen N, Tepper RS, Antony VB (2007). "Cyclic stretch induces PlGF expression in bronchial airway epithelial cells via nitric oxide release.". Am. J. Physiol. Lung Cell Mol. Physiol. 292 (2): L559–66. doi: . PMID 17028267.