Image:PiArchimedes.png

From Wikipedia, the free encyclopedia

Wikimedia Commons logo This is a file from the Wikimedia Commons. The description on its description page there is shown below.
Commons is a freely licensed media file repository. You can help.

[edit] Summary

calculating pi like Archimedes with polygons

[edit] Licensing

I, the copyright holder of this work, hereby publish it under the following licenses:
GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation license, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation license".

Aragonés | العربية | Asturianu | Български | বাংলা | ইমার ঠার/বিষ্ণুপ্রিয়া মণিপুরী | Brezhoneg | Bosanski | Català | Cebuano | Česky | Dansk | Deutsch | Ελληνικά | English | Esperanto | Español | Eesti | Euskara | فارسی | Suomi | Français | Gaeilge | Galego | עברית | Hrvatski | Magyar | Bahasa Indonesia | Ido | Íslenska | Italiano | 日本語 | ქართული | ភាសាខ្មែរ | 한국어 | Kurdî / كوردی | Latina | Lëtzebuergesch | Lietuvių | Bahasa Melayu | Nnapulitano | Nederlands | ‪Norsk (nynorsk)‬ | ‪Norsk (bokmål)‬ | Occitan | Polski | Português | Română | Русский | Slovenčina | Slovenščina | Shqip | Српски / Srpski | Svenska | తెలుగు | ไทย | Türkçe | Українська | اردو | Tiếng Việt | Volapük | Yorùbá | ‪中文(中国大陆)‬ | ‪中文(台灣)‬ | +/-

Some rights reserved
Creative Commons Attribution iconCreative Commons Share Alike icon
This file is licensed under the Creative Commons Attribution ShareAlike license versions 2.5, 2.0, and 1.0

العربية | Български | Català | Česky | Dansk | Deutsch | English | Español | Euskara | فارسی | Français | עברית | Italiano | 日本語 | 한국어 | Lietuvių | Nederlands | Polski | Português | Русский | Svenska | தமிழ் | Türkçe | 中文 | 中文 | +/-

You may select the license of your choice.

[edit] Explanation

Archimedes of Syrakus prooved the identity of the two numbers a and b, where a is the quotient of the perimeter and the diameter of a circle and b is the quotient of the area and the square of the radius of the same circle. He did not yet use the name pi for this number, but he described how this number could be calculated using inscribed and circumscribed polygons. This is presumably the oldest numerical approximation in mathematical history. Archimedes himself calculated pi using polygons with up to 96 vertices and got his famous result:

3{,}1408450 \dots = 3 + \frac{10}{71} <\pi< 3 + \frac{10}{70} = 3{,}1428571 \dots

In modern mathematical language the approximation uses an unit circle (r = 1) and starts with simple polygons with small vertice numbers like n = 2, 3, 4 or 6 and the respective edge lengths s2 = 2, s_3 = \sqrt{3}, s_4 = \sqrt{2} or s6 = 1.

Then the vertice number is doubled using the line ρn = MS and in two rectangled triangles the theorem of Pythagoras (AM^2 = MS^2 + AS^2, 1 = \rho_n^2 + s_n^2/4, \rho_n = \sqrt{1-s_n^2/4} and AC^2 = AS^2 + SC^2, s_{2n}^2 = s_n^2/4 + (1-\rho_n)^2 = s_n^2/4 + 1 - 2 \rho_n + \rho_n^2). The result is the edge length s2n = AC:

s_{2n}=\sqrt{2-2\sqrt{1-\frac{s_n^2}{4}}}

With this formula an approximation of pi can be calculated using elementary arithmetic (addition, subtraction, multiplication, division and square root). The following table contains the begin of this approximation starting with a "two-angle". It gives the numbers n (vertice number), the distance 1 − ρn between line mid S of AB and perimeter of the circle, the edge lengths sn = AB and S_n = A'B' =  s_n \cdot 1 / \rho_n of the inscribed and circumscribed polygon and the respective areas an = nsnρn / 2 and An = nSn / 2. These areas should enclose pi and they should converge to pi.

The calculation is numerically unstable because the subtraction produces a cancellation of digits and can be used to demonstrate cancellation.

n             1 − ρn        sn         Sn            an                 An
2          1.000e+00  2.00e+00       Inf  0.00000000000000               Inf
4          2.929e-01  1.41e+00  2.00e+00  2.00000000000000  4.00000000000000
8          7.612e-02  7.65e-01  8.28e-01  2.82842712474619  3.31370849898476

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeDimensionsUserComment
current09:00, 22 November 2006595×841 (7 KB)Brf ({{Information |Description=Graphic to explain the calculation of pi after Archimedes |Source=own work |Date=2006/11/22 |Author=brf |Permission=own work |other_versions=non }})
08:43, 22 November 2006595×841 (7 KB)Brf
14:58, 21 November 2006595×841 (6 KB)Brf (calculating pi like Archimedes with polygons)
No pages on the English Wikipedia link to this file. (Pages on other projects are not counted.)