Phytoremediation, Hyperaccumulators

From Wikipedia, the free encyclopedia

Main article: Phytoremediation

This table was originally provided by Stevie Famulari for her students at the University of New Mexico Landscape Architecture Department, for a phytoremediation project regarding the drainage canyon of the Manhattan Project at Los Alamos, New Mexico. It has now grown into three sections.

This section covers mainly some toxic metals and informations on the plants used for their remediation.

Contents

[edit] See also


[edit] Hyperaccumulators table – 1

hyperaccumulators and contaminants : Al, Ag, As, Be, Cr, Cu, Mn, Hg, Mo, Naphtalene, Pb, Pd, Pt, Se, Zn – accumulation rates
Contaminant Accumulation rates (in mg/kg dry weight) Latin name English name H-Hyperaccumulator or A-Accumulator P-Precipitator T-Tolerant Notes Sources
Al-Aluminium A- Agrostis castellana Bent Grass As(A), Mn(A), Pb(A), Zn(A) Origin Portugal [1]
Al - Aluminium 1000 Hordeum Vulgare Barley xxx 25 records of plants [2],[3]
Al-Aluminium xxx Solidago hispida (Solidago Canadensis L.) Hairy Goldenrod xxx Comes from Canada [2],[3]
Al-Aluminium 100 Vicia faba Horse Bean xxx xxx [2],[3]
Ag-Silver xxx Brassica napus Rapeseed plant Cr, Hg, Pb, Se, Zn Phytoextraction [4],[5]
Ag-Silver xxx Salix Spp. Osier spp. Cr, Hg, Se, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products[5]; Cd, Pb, U, Zn (S. viminalix)[6]; Potassium ferrocyanide (S. babylonica L.)[7] Phytoextraction. Perchlorate (wetland halophytes) [5]
Ag-Silver 10-1200 Amanita strobiliformis European Pine Cone Lepidella Ag(H) Macrofungi, Basidiomycete. Known from Europe, prefers calcareous areas Borovička et al. (2007) in Mycol. Res. 111: 1339-1344
As-Arsenic 100 Agrostis capillaris L. Bent Grass Al(A), Mn(A), Pb(A), Zn(A) xxx [3]
As-Arsenic H- Agrostis castellana Bent Grass Al(A), Mn(A), Pb(A), Zn(A) Origin Portugal [1]
As-Arsenic 1000 Agrostis tenerrima Trin. Colonial bentgrass xxx 4 records of plants [3],[8]
As-Arsenic 27,000 (fronds)[9] Pteris vittata L. Chinese brake fern 26% of arsenic in the soil removed after 20 weeks' plantation, about 90% As accumulated in fronds.[10]. Root extracts reduce arsenate to arsenite[11]. xxx
As-Arsenic 100-7000 Sarcosphaera coronaria No common name As(H) Ectomycorrhizal ascomycete, known from Europe Stijve et al. 1990 in Persoonia 14(2): 161-166, Borovička 2004 in Mykologický Sborník 81: 97-99.
Be-Beryllium xxx xxx xxx xxx No reports found for accumulation [3]
Cr-Chromium xxx Azolla spp. xxx xxx xxx [3],[12]
Cr-Chromium H- Bacopa monnieri Smooth Water Hyssop Cd(H), Cu(H), Hg(A), Pb(A) Origin India; aquatic emergent species [1],[13]
Cr-Chromium xxx Brassica juncea L. Indian mustard Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H) cultivated [1],[5],[14]
Cr-Chromium xxx Brassica napus Rapeseed plant Ag, Hg, Pb, Se, Zn Phytoextraction [4],[5]
Cr-Chromium A- Vallisneria Americana Tape Grass Cd(H), Pb(H) Native to Europe and North Africa; widely cultivated in the aquarium trade [1]
Cu(H), Cd(H), Cr(A), Pb(H) xxx Vallisneria Americana Tape Grass Cd(H), Cr(A), Pb(H) Native to Europe and North Africa; widely cultivated in the aquarium trade [1]
Cr-Chromium 1000 Dicoma niccolifera xxx xxx 35 records of plants [3]
Cr-Chromium xxx Eichhornia crassipes Water Hyacinth Cd(H), Cu(A), Hg(H), Pb(H), Zn(A). Also Cs, Sr, U[15], and pesticides[16]. Pantropical/Subtropical, 'the troublesome weed' [1]
Cr-Chromium xxx Helianthus annuus xxx xxx Phytoextraction & rhizofiltration [1],[5]
Cr A- Hydrilla verticallata Hydrilla Cd(H) Hg(H), Pb(H) xxx [1]
Cr-Chromium xxx Medicago sativa Alfalfa xxx xxx [3],[17]
Cr-Chromium xxx Pistia stratiotes Water lettuce Cd(T), Hg(H), Cr(H), Cu(T) xxx [1],[3],[18]
Cr-Chromium xxx Salix Spp. Osier spp. Ag, Hg, Se, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products[5]; Cd, Pb, U, Zn (S. viminalix)[6]; Potassium ferrocyanide (S. babylonica L.)[7] Phytoextraction. Perchlorate (wetland halophytes) [5]
Cr-Chromium xxx Salvinia molesta Kariba weeds or water ferns Cr(H), Ni(H), Pb(H), Zn(A) xxx [1],[3],[19]
Cr-Chromium xxx Spirodela polyrhiza Giant Duckweed Cd(H), Ni(H), Pb(H), Zn(A) Native to North America [1],[3],[19]
Cr-Chromium 100 Sutera fodina xxx xxx xxx [3],[20],[21]
Cr-Chromium A- Thlaspi caerulescens xxx Cd(H), Co(H), Cu(H), Mo, Ni(H), Pb(H), Zn(H) Phytoextraction. T. caerulescens may acidify its rhizosphere, which would affect metal uptake by increasing available metals[22] [1],[3],[5],[23],[24],[25]
Cu-Copper 9000 Aeolanthus biformifolius xxx xxx xxx [26]
Cu-Copper xxx Athyrium yokoscense (Japanese false spleenwort?) Cd(A), Pb(H), Zn(H) Origin Japan [1]
Cu-Copper A- Azolla filiculoides Pacific mosquitofern Ni(A), Pb(A), Mn(A) Origin Africa; floating plant [1]
Cu-Copper H- Bacopa monnieri Smooth Water Hyssop Cd(H), Cr(H), Hg(A), Pb(A) Origin India; aquatic emergent species [1],[13]
Cu-Copper xxx Brassica juncea L. Indian mustard Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H) cultivated [1],[5],[14]
Cu-Copper H- Callisneria Americana Tape Grass Cd(H), Cr(A), Pb(H) Native to Europe and North Africa; widely cultivated in the aquarium trade [1]
Cu-Copper xxx Eichhornia crassipes Water Hyacinth Cd(H), Cr(A), Hg(H), Pb(H), Zn(A), Also Cs, Sr, U[15], and pesticides[16]. Pantropical/Subtropical, 'the troublesome weed' [1]
Cu-Copper 1000 Haumaniustrum robertii xxx xxx 27 records of plants; origin Africa. Vernacular name: 'copper flower'. This species' phanerogamme has the highest cobalt content. Its distribution could be gouverned by cobalt rather than copper[27]. [3],[24]
Cu-Copper xxx Helianthus annuus Sunflower xxx Phytoextraction & rhizofiltration [1],[24]
Cu-Copper 1000 Larrea tridentata Creosote Bush xxx 67 records of plants; origin U.S. [3],[24]
Cu-Copper H- Lemna minor Duckweed Pb(H), Cd(H), Zn(A) Native to North America and widespread [1]
Cu-Copper T- Pistia stratiotes Water Lettuce Cd(T), Hg(H), Cr(H) Pantropical, origin South U.S.A.; aquatic herb [1]
Cu-Copper xxx Thlaspi caerulescens Alpine pennycress Cd(H), Cr(A), Co(H), Mo, Ni(H), Pb(H), Zn(H) Phytoextraction. Copper noticeably limits its growth[25]. [1],[3],[5],[22],[23],[24],[25]
Mn-Manganese A- Agrostis castellana Bent Grass Al(A), As(A), Pb(A), Zn(A) Origin Portugal [1]
Mn-Manganese xxx Azolla filiculoides Pacific mosquitofern Cu(A), Ni(A), Pb(A) Origin Africa; floating plant [1]
Mn-Manganese xxx Brassica juncea L. Indian mustard xxx xxx [5],[14]
Mn-Manganese xxx Helianthus annuus Sunflower xxx Phytoextraction & rhizofiltration [5]
Mn-Manganese 1000 Macademia neurophylla xxx xxx 28 records of plants [3],[28]
Mn-Manganese 200 xxx xxx xxx xxx [3]
Hg-Mercury A- Bacopa monnieri Smooth Water Hyssop Cd(H), Cr(H), Cu(H), Hg(A), Pb(A) Origin India; aquatic emergent species [1],[13]
Hg-Mercury xxx Brassica napus Rapeseed plant Ag, Cr, Pb, Se, Zn Phytoextraction [4],[5]
Hg-Mercury xxx Eichhornia crassipes Water Hyacinth Cd(H), Cr(A), Cu(A), Pb(H), Zn(A)Also Cs, Sr, U[15], and pesticides[16]. Pantropical/Subtropical, 'the troublesome weed' [1]
Hg H- Hydrilla verticallata Hydrilla Cd(H), Cr(A), Pb(H) xxx [1]
Hg-Mercury 1000 Pistia stratiotes Water lettuce Cd(T), Cr(H), Cu(T) 35 records of plants [1],[3],[24],[29]
Hg-Mercury xxx Salix Spp. Osier spp. Ag, Cr, Se, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products[5]; Cd, Pb, U, Zn (S. viminalix)[6]; Potassium ferrocyanide (S. babylonica L.)[7] Phytoextraction. Perchlorate (wetland halophytes) [5]
Mo-molybdenum 1500 Thlaspi caerulescens (Brassica) Alpine pennycress Cd(H), Cr(A), Co(H), Cu(H), Ni(H), Pb(H), Zn(H) phytoextraction [1],[3],[5],[22],[23],[24],[25]
Naphtalene xxx Festuca arundinacea Tall Fescue xxx increases catabolic genes and the mineralization of naphthalene [30]
Naphtalene xxx Trifolium hirtum Pink clover xxx decreases catabolic genes and the mineralization of naphthalene [30]
Pb-Lead A- Agrostis castellana Bent Grass Al(A), As(H), Mn(A), Zn(A) Origin Portugal [1]
Pb-Lead xxx Ambrosia artemisiifolia Ragweed xxx xxx [4]
Pb-Lead xxx Armeria maritima Seapink Thrift xxx xxx [4]
Pb-Lead xxx Athyrium yokoscense (Japanese false spleenwort?) Cd(A), Cu(H), Zn(H) Origin Japan [1]
Pb-Lead A- Azolla filiculoides Pacific mosquitofern Cu(A), Ni(A), Mn(A) Origin Africa; floating plant [1]
Pb-Lead A- Bacopa monnieri Smooth Water Hyssop Cd(H), Cr(H), Cu(H), Hg(A) Origin India; aquatic emergent species [1],[13]
Pb-Lead H- Brassica juncea Indian mustard Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H) 79 recorded plants. Phytoextraction [1],[3],[4],[5],[14],[22],[24],[25],[31]
Pb-Lead xxx Brassica napus Rapeseed plant Ag, Cr, Hg, Se, Zn Phytoextraction [4],[5]
Pb-Lead xxx Brassica oleracea Ornemental Kale et Cabbage, Broccoli xxx xxx [4]
Pb-Lead H- Callisneria Americana Tape Grass Cd(H), Cr(A), Cu(H) Native to Europe and North Africa; widely cultivated in the aquarium trade [1]
Pb-Lead xxx Eichhornia crassipes Water Hyacinth Cd(H), Cr(A), Cu(A), Hg(H), Zn(A). Also Cs, Sr, U[15], and pesticides[16]. Pantropical/Subtropical, 'the troublesome weed' [1]
Pb-Lead xxx Festuca ovina Blue Sheep Fescue xxx xxx [4]
Pb-Lead xxx Helianthus annuus Sunflower xxx Phytoextraction & rhizofiltration [1],[4],[5],[6],[31]
Pb-Lead H- Hydrilla verticallata Hydrilla Cd(H), Cr(A), Hg(H) xxx [1]
Pb-Lead H- Lemna minor Duckweed Cd(H), Cu(H), Zn(H) Native to North America and widespread [1]
Pb-Lead xxx Salix viminalis Common Osier Cd, U, Zn[6]; Ag, Cr, Hg, Se, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products (S. spp.)[5]; Potassium ferrocyanide (S. babylonica L.)[7] Phytoextraction. Perchlorate (wetland halophytes) [6]
Pb-Lead H- Salvinia molesta Water Fern Cr(H), Ni(H), Pb(H), Zn(A) Origin India [1]
Pb-Lead xxx Spirodela polyrhiza Giant Duckweed Cd(H), Cr(H), Ni(H), Zn(A) Native to North America [1],[3],[19]
Pb-Lead xxx Thlaspi caerulescens (Brassica) Alpine pennycress Cd(H), Cr(A), Co(H), Cu(H), Mo(H), Ni(H), Zn(H) phytoextraction. [1],[3],[5],[22],[23],[24],[25]
Pb-Lead xxx Thlaspi rotundifolium Pennycress xxx xxx [4]
Pb-Lead xxx Triticum aestivum Wheat (scout) xxx xxx [4]
Pb-Lead A-200 xxx xxx xxx xxx [3]
Pd-Palladium xxx xxx xxx xxx No reports found for accumulation [3]
Pt-Platinum xxx xxx xxx xxx No reports found for accumulation [3]
Se-Selenium xxx Brassica juncea Indian mustard xxx Rhizosphere bacteria enhance accumulation[32] [5]
Se-Selenium xxx Brassica napus Rapeseed plant Ag, Cr, Hg, Pb, Zn Phytoextraction [4],[5]
Se-Selenium 1.9% of the total mass Se input is accumulated in its tissues; 0.5% is removed via biological volatilization[33]. Chara canescens Desv. & Lois Muskgrass xxx Muskgrass treated with selenite contains 91% of the total Se in organic forms (selenoethers and diselenides), compared with 47% in muskgrass treated with selenate[34]. Low rates of Se volatilization from selenate-supplied muskgrass (10-fold less than from selenite) may be due to a major rate limitation in the reduction of selenate to organic forms of Se in muskgrass. [35]
Se-Selenium xxx Kochia scoparia xxx Pb, U[6]. Ag, Cr, Hg, Zn Perchlorate (wetland halophytes). Phytoextraction [1],[5]
Se-Selenium xxx Salix Spp. Osier spp. Ag, Cr, Hg, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products[5]; Cd, Pb, U, Zn (S. viminalis)[6]; Potassium ferrocyanide (S. babylonica L.)[7] Phytoextraction. Perchlorate (wetland halophytes) [5]
Zn-Zinc A- Agrostis castellana Bent Grass Al(A), As(H), Mn(A), Pb(A) Origin Portugal [1]
Zn-Zinc xxx Athyrium yokoscense (Japanese false spleenwort?) Cd(A), Cu(H), Pb(H) Origin Japan [1]
Zn-Zinc xxx Brassicaeae xxx Hyperaccumulators: Cd, Cs, Ni, Sr Phytoextraction [5]
Zn-Zinc xxx Brassica juncea L. Indian mustard Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A) larvae of Pieris brassicae do not even sample its high-Zn leaves. (Pollard and Baker, 1997) [1],[5],[14]
Zn-Zinc xxx Brassica napus Rapeseed plant Ag, Cr, Hg, Pb, Se Phytoextraction [4],[5]
Zn-Zinc xxx Eichhornia crassipes Water Hyacinth Cd(H), Cr(A), Cu(A), Hg(H), Pb(H)Also Cs, Sr, U[15], and pesticides[16]. Pantropical/Subtropical, 'the troublesome weed' [1]
Zn-Zinc xxx Helianthus annuus Sunflower xxx Phytoextraction & rhizofiltration [5],[6]
Zn-Zinc xxx Salix viminalis Common Osier Ag, Cr, Hg, Se, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products[5]; Cd, Pb, U (S. viminalis)[6]; Potassium ferrocyanide (S. babylonica L.)[7] Phytoextraction. Perchlorate (wetland halophytes) [6]
Zn-Zinc A- Salvinia molesta Water Fern Cr(H), Ni(H), Pb(H), Zn(A) Origin India [1]
Zn-Zinc 1400 Silene vulgaris (Moench) Garcke (Caryophyllaceae) xxx xxx Ernst et al. (1990)
Zn-Zinc xxx Spirodela polyrhiza Giant Duckweed Cd(H), Cr(H), Ni(H), Pb(H) Native to North America [1],[3],[19]
Zn-Zinc H-10,000 Thlaspi caerulescens (Brassica) Alpine pennycress Cd(H), Cr(A), Co(H), Cu(H), Mo, Ni(H), Pb(H) 48 records of plants. May acidify its own rhizosphere, which would facilitate absorption by solubilization of the metal[22] [1],[3],[5],[23],[24],[25],[31]
Zn-Zinc xxx Trifolium pratense Red Clover nonmetal accumulator Its rhizosphere is denser in bacteria than that of Thlaspi caerulescens, but Thlaspi c. has relatively more metal-resistant bacteria[22] xxx

Cs-137 activity was much smaller in leaves of larch and sycamore maple than of spruce: spruce > larch > sycamore maple.

[edit] Reference sources and notes for the hyperaccumulators table

[edit] Notes

  • The references are so far mostly from academic trial papers, experiments and generally of exploration of that field.
  • Alpine pennycress or «Alpine Pennygrass» is found as «Alpine Pennycrest» in (some books).
  • Uranium's symbol is sometimes given as Ur instead of U. According to Ulrich Schmidt[6], plants' concentration of uranium is considerably increased by an application of citric acid, which solubilizes the Uranium (and other metals).

[edit] References

  1. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons pg 898
  2. ^ a b c Grauer & Horst 1990
  3. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons pg 891
  4. ^ a b c d e f g h i j k l m n [1] A Resource Guide: The Phytoremediation of Lead to Urban, Residential Soils. Site adapted from a report from Northwestern University written by Joseph L. Fiegl, Bryan P. McDonnell, Jill A. Kostel, Mary E. Finster, and Dr. Kimberly Gray
  5. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons pg 19
  6. ^ a b c d e f g h i j k l [2] Ulrich Schmidt, Enhancing Phytoextraction: The Effect of Chemical Soil Manipulation on Mobility, Plant Accumulation, and Leaching of Heavy Metals. J. Environ. Qual. 32:1939-1954 (2003)
  7. ^ a b c d e f [3] X.Z. Yu, P.H. Zhou and Y.M. Yang, The potential for phytoremediation of iron cyanide complex by Willows. Ecotoxicology 2006.
  8. ^ Porter and Peterson 1975
  9. ^ [4] Junru Wang, Fang-Jie Zhao, Andrew A. Meharg, Andrea Raab, Joerg Feldmann, and Steve P. McGrath, Mechanisms of Arsenic Hyperaccumulation in Pteris vittata. Uptake Kinetics, Interactions with Phosphate, and Arsenic Speciation. Plant Physiol, November 2002, Vol. 130, pp. 1552-1561. 18 days' hydroponic experiment with varying concentrations of arsenate and P. Within 8 h, 50% to 78% of the As taken up is distributed to the fronds, which take from 1.3 to 6.7 times more As than the roots do. No P for 8 days increases the arsenate's maximum net influx by 2.5-fold; the plants then absorbs 10 times more arsenate than arsenite. If on the other hand the P supply is increased, As uptake decreases - with a greater effect on the roots than on the shoots. More arsenate decreases the P concentration in the roots, but not in the fronds. P in the uptake solution markedly decreases arsenate uptake. The presence or absence of P does not affect the uptake of arsenite, which translocates more easily than arsenate.
  10. ^ [5] C. Tu, L.Q. Ma and B. Bondada, Arsenic Accumulation in the Hyperaccumulator Chinese Brake and Its Utilization Potential for Phytoremediation. 'Plant Physiology' journal 138:461-469 (April 2005)
  11. ^ [6] Gui-Lan Duan, Y.-G. Zhu, Y.-P. Tong, C. Cai and R. Kneer, Characterization of Arsenate Reductase in the Extract of Roots and Fronds of Chinese Brake Fern, an Arsenic Hyperaccumulator. Plant Physiology 138:461-469 (2005). Yeast (Saccharomyces c.) has an arsenate reductase, Acr2p, that uses glutathione as the electron donor. Pteris vit. has an arsenate reductase with the same reaction mechanism, and the same substrate specificity and sensitivity toward inhibitors (P as a competitive inhibitor, arsenite as a noncompetitive inhibitor)
  12. ^ Priel 1995
  13. ^ a b c d Gurta et al. 1994
  14. ^ a b c d e [7] L.E. Bennetta, J.L. Burkheada, K.L. Halea, N. Terry, M. Pilona and E.A. H. Pilon-Smits. Analysis of Transgenic Indian Mustard Plants for Phytoremediation of Metal-Contaminated Mine Tailings.
  15. ^ a b c d e [8] Phytoremediation of radionuclides.
  16. ^ a b c d e [9] J.K. Lan, Recent developments of phytoremediation. Journal of Geological Hazards and Environment Preservation/Dizhi Zaihai Yu Huanjing Baohu (J. Geol. Hazards Environ. Preserv.). Vol. 15, no. 1, pp. 46-51. Mar 2004.
  17. ^ Tiemmann et al. 1994
  18. ^ Sen et al. 1987
  19. ^ a b c d Srivastav 1994
  20. ^ Wild 1974
  21. ^ Brooks & Yang 1984
  22. ^ a b c d e f g [10] T.A. Delorme, J.V. Gagliardi, J.S. Angle and R.L. Chaney. Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations. Conseil National de Recherches du Canada. Can. J. Microbiol./Rev. can. microbiol. 47(8): 773-776 (2001)
  23. ^ a b c d e [11] Majeti Narasimha Vara Prasad, Nickelophilous plants and their significance in phytotechnologies. Braz. J. Plant Physiol. Vol.17 no.1 Londrina Jan./Mar. 2005
  24. ^ a b c d e f g h i j Baker & Brooks, 1989
  25. ^ a b c d e f g [12] E. Lombi, F.J. Zhao, S.J. Dunham et S.P. McGrath, Phytoremediation of Heavy Metal, Contaminated Soils, Natural Hyperaccumulation versus Chemically Enhanced Phytoextraction. Journal of Environmental Quality 30:1919-1926 (2001)
  26. ^ [13] R.S. Morrison, R.R. Brooks, R.D. Reeves and F. Malaisse. Copper and cobalt uptake by metallophytes from Zaïre. Plant and Soil, Volume 53, Number 4 / December, 1979
  27. ^ [14] R. R. Brooks, Copper and cobalt uptake by Haumaniustrum species.
  28. ^ Baker & Walker 1990
  29. ^ Atri 1983
  30. ^ a b [15] S.D. Siciliano, J.J. Germida, K. Banks and C. W. Greer, Changes in Microbial Community Composition and Function during a Polyaromatic Hydrocarbon Phytoremediation Field Trial. Applied and Environmental Microbiology, January 2003, p. 483-489, Vol. 69, No. 1
  31. ^ a b c Phytoremediation Decision Tree, ITRC
  32. ^ [16] Mark P. de Souza, Dara Chu, May Zhao, Adel M. Zayed, Steven E. Ruzin, Denise Schichnes, and Norman Terry, Rhizosphere Bacteria Enhance Selenium Accumulation and Volatilization by Indian mustard, Plant Physiol. (1999) 119: 565-574
  33. ^ Average Se concentration of 22 µg L-1 supplied over a 24-d experimental period.
  34. ^ X-ray absorption spectroscopy speciation analysis.
  35. ^ [17] Z.-Q. Lin, M.P. de Souza, I. J. Pickering and N. Terry. Evaluation of the Macroalga, Muskgrass, for the Phytoremediation of Selenium-Contaminated Agricultural Drainage Water by Microcosms. Journal of Environmental Quality 2002, 31:2104-2110