Phase Change Material
From Wikipedia, the free encyclopedia
This article does not cite any references or sources. (April 2008) Please help improve this article by adding citations to reliable sources. Unverifiable material may be challenged and removed. |
A phase change material (PCM) is a substance with a high heat of fusion which, melting and solidifying at a certain temperature, is capable of storing and releasing large amounts of energy. Heat is absorbed or released when the material changes from solid to liquid and vice versa; thus, PCMs are classified as latent heat storage (LHS) units.
Contents |
[edit] Characteristics and Classification
PCMs latent heat storage can be achieved through solid-solid, solid-liquid, solid-gas and liquid-gas phase change. However, the only phase change used for PCMs is the solid-liquid change. Liquid-gas phase changes are not practical for use as thermal storage due to the large volumes or high pressures required to store the materials when in their gas phase. Liquid-gas transitions do have a higher heat of transformation than solid-liquid transitions. Solid-solid phase changes are typically very slow and have a rather low heat of transformation.
Initially, the solid-liquid PCMs behave like sensible heat storage (SHS) materials; their temperature rises as they absorb heat. Unlike conventional SHS, however, when PCMs reach the temperature at which they change phase (their melting temperature) they absorb large amounts of heat at an almost constant temperature. The PCM continues to absorb heat without a significant raise in temperature until all the material is transformed to the liquid phase. When the ambient temperature around a liquid material falls, the PCM solidifies, releasing its stored latent heat. A large number of PCMs are available in any required temperature range from -5 up to 190 oC [1]. Within the human comfort range of 20° to 30°C, some PCMs are very effective. They store 5 to 14 times more heat per unit volume than conventional storage materials such as water, masonry, or rock.[citation needed]
PCMs are classified into three categories: Organic, Inorganic and Eutectic.
- Organic PCMs - Paraffin (CnH2n+2) and Fatty acids (CH3(CH2)2nCOOH)
- Advantages
- Availability in a large temperature range
- Freeze without much super cooling
- Ability to melt congruently
- Self nucleating properties
- Compatibility with conventional material of construction
- No segregation
- Chemically stable
- High heat of fusion
- Safe and non-reactive
- Recyclable
- Disadvantages
- Low thermal conductivity in their solid state. High heat transfer rates are required during the freezing cycle
- Volumetric latent heat storage capacity is low
- Flammable. This can be easily alleviated by a proper container
- Due to cost consideration only technical grade paraffins may be used which are essentially paraffin mixture and are completely refined of oil
- Advantages
- Inorganic - Salt hydrates (MnH2O)
- Advantages
- High volumetric latent heat storage capacity
- Low cost and easy availability
- Sharp melting point
- High thermal conductivity
- High heat of fusion
- Low volume change
- Non-flammable
- Disadvantages
- Change of volume is very high
- Super cooling is major problem in solid-liquid transition
- Nucleating agents are needed and they often become imperative after repeated cycling
- Advantages
- Eutectics - organic-organic, organic-inorganic, inorganic-inorganic compounds
- Advantages
- Eutectics have sharp melting point similar to pure substance
- Volumetric storage density is slightly above organic compounds
- Disadvantages
- Only limited data is available on thermo-physical properties as the use of these materials are very new to thermal storage application
- Advantages
[edit] Selection Criteria
- Thermodynamic properties, The phase change material should possess [2]
- Melting temperature in the desired operating temperature range
- High latent heat of fusion per unit volume
- High specific heat, high density and high thermal conductivity
- Small Volume changes on phase transformation and small vapor pressure at operating temperatures to reduce the containment problem
- Congruent melting
- Kinetic properties
- High nucleation rate to avoid super cooling of the liquid phase
- High rate of crystal growth, so that the system can meet demands of heat recovery from the storage system
- Chemical properties
- Chemical stability
- Complete reversible freeze/melt cycle
- No degradation after a large number of freeze/melt cycle
- Non-corrosiveness, non-toxic, non-flammable and non-explosive materials
- Economic properties
- Low cost
- Large-scale availabilities
[edit] Thermo-physical properties of selected PCMs
Materials | Melting point
(oC) |
Heat of fusion
(kJ/kg) |
Specific Heat
solid/liquid (kJ/kgoC) |
Density
solid/liquid (kg/m3) |
---|---|---|---|---|
Water | 0 | 333.6 | 2.05 / 4.18 | 999 / 1000 |
Organic PCMs[3][4] | ||||
Lauric acid | 41 - 43 | 211.6 | 1.76 / 2.27 | 1007 / 862 |
Trimethyloethane (63 wt%) +
water (37 wt%) |
29.8 | 218.0 | 2.75 / 3.58 | 1120 / 1090 |
Inorganic PCMs[5][6] | ||||
Mn(NO3)2 6H2O+
MnCl2 4H2O (4 wt%) |
15 - 25 | 125.9 | 2.34 / 2.78 | 1795 / 1728 |
Na2S2O3 5H2O | 48 | 267.0 | 3.83 / 4.57 | 1450 / 1280 |
Eutectic PCMs[7] | ||||
Capric acid (65 mol%)
+ Lauric acid (35 mol%) |
18 - 19.5 | 140.8 | 1.97 / 2.24 | - / - |
Commercial grade[8][9] | ||||
E23™ - EPS Ltd | 23 | 155.0 | 0.69 / - | 1475 / - |
RT27™ - Rubitherm | 28 | 146.0 | 1.80 / 2.40 | 870 / 750 |
[edit] Technology, Development and Encapsulation
The most commonly used PCMs are salt hydrates, fatty acids and esters, and various paraffins (such as octadecane). Recently also ionic liquids were investigated as novel PCMs.
As most of the organic solutions are water free, they can be exposed to air, but all salt based PCM solutions must be encapsulated to prevent water evaporation or uptake. Both types offer certain advantages and disadvantages and if they are correctly applied some of the disadvantages becomes an advantage for certain applications.
Eutectic salts have been used since the late 1800s as a medium for the thermal storage applications. They have been used in such diverse applications as refrigerated transportation for rail and road applications and their physical properties are, therefore, well-known.[citation needed]
Unlike the ice storage system, however, the PCM systems can be used with any conventional water chiller both for a new or alternatively retrofit application. The positive temperature phase change allows centrifugal and absorption chillers as well as the conventional reciprocating and screw chiller systems or even lower ambient conditions utilizing a cooling tower or dry cooler for charging the TES system.
The temperature range offered by the PCM technology provides a new horizon for the building services and refrigeration engineers regarding medium and high temperature energy storage applications. The scope of this thermal energy application is wide ranging of solar heating, hot water, heating rejection, i.e. cooling tower and dry cooler circuitry thermal energy storage applications.
Since PCMs transform between solid-liquid in thermal cycling, encapsulation[10] naturally become the obvious storage choice.
- Encapsulation of PCMs
- Macroencapsulation: Early development of macroencapsulation with large volume containment failed due to the poor thermal conductivity of most PCMs. PCMs tend to solidify at the edges of the containers preventing effective heat transfer.
- Microencapsulation: Microencapsulation on the other hand showed no such problem. It allows the PCMs to be incorporated into construction materials, such as concrete, easily and economically. Microencapsulated PCMs also provide a portable heat storage system. By coating a microscopic sized PCM with a protective coating, the particles can be suspended within a continuous phase such as water. This system can be considered a phase change slurry (PCS).
As phase change materials perform best in small containers, therefore they are usually divided in cells. The cells are shallow to reduce static head - based on the principle of shallow container geometry. The packaging material should conduct heat well; and it should be durable enough to withstand frequent changes in the storage material's volume as phase changes occur. It should also restrict the passage of water through the walls, so the materials will not dry out (or water-out, if the material is hygroscopic). Packaging must also resist leakage and corrosion. Common packaging materials showing chemical compatibility with room temperature PCMs include stainless steel, polypropylene and polyolefin.
Currently, phase change materials (PCMs) are very widely used in tropical regions in telecom shelters. They protect the high-value equipment in the shelter by keeping the indoor air temperature below the maximum permissible by absorbing heat generated by power-hungry equipment such as a Base Station Subsystem. In case of a power failure to conventional cooling systems, PCMs minimize use of Diesel generators, and this can translate into enormous savings across thousands of telecom sites in tropics.
[edit] Applications
Applications[1][11] of phase change materials include, but are not limited to:
- Thermal energy storage
- Conditioning of buildings, such as 'ice-storage'
- Cooling of heat and electrical engines
- Cooling: food, wine, milk products, green houses
- Medical applications: transportation of blood, operating tables, hot-cold therapies
- Waste heat recovery
- Off peak power utilization: Heating hot water and Cooling
- Heat pump systems
- Passive storage in bio-climatic building/architecture (HDPE, paraffin)
- Smoothing exothermic temperature peaks in chemical reactions
- Solar power plants
- Spacecraft thermal systems
- Thermal comfort in vehicles
- Thermal protection of electronic devices
- Thermal protection of food: transport, hotel trade, ice-cream etc.
- Textiles used in clothing
[edit] Fire and safety issues
Some phase change materials are suspended in water, and are relatively nontoxic. Others are hydrocarbons or other flammable materials, or are toxic. As such, PCMs must be selected and applied very carefully, in accordance with fire and building codes and sound engineering practices. Because of the increased fire risk, flamespread, smoke, potential for explosion when held in containers, and liability, it may be wise not to use flammable PCMs within residential or other regularly occupied buildings. Phase change materials are also being used in thermal regulation of electronics.
[edit] References
- ^ a b M. Kenisarin and K. Mahkamov, Renewable & Sustainable Energy Reviews 11 (2007) 1913-1965
- ^ A. Pasupathy, R. Velraj and R.V. Seeniraj, Renewable & Sustainable Energy Reviews 12 (2008) 39-64
- ^ A. Sari et al. Energy Convers. Manage 43 (2002) 2493
- ^ H. Kakuichi et al., IEA annex 10 (1999)
- ^ K. Nagano et al. Appl. Therm. Eng. 23 (2003) 229
- ^ Y. Zhang et al. Meas. Sci. Technol 10 (1999) 201
- ^ M.N.R. Dimaano and T. Watanabe, Sol. Energy 72 (2002) 205
- ^ EPS Ltd., 2004. Environment Processing System Limited. http://www.epsltd.co.uk
- ^ Rubitherm GmbH, 2004 http://rubitherm.de
- ^ V.V. Tyagi and D. Buddhi, Renewable & Sustainable Energy Reviews 11 (2007) 1146
- ^ A.M. Omer, Renewable & Sustainable Energy Reviews 12 (2008) 1562