Paclitaxel

From Wikipedia, the free encyclopedia

Paclitaxel
Systematic (IUPAC) name
(1S,2S,3R,4S,7R,9S,10S,12R,15S) -4,12-Diacetoxy-15-{[(2R,3S)-3- (benzoylamino)-2-hydroxy-3- phenylpropanoyl]oxy}-1,9- dihydroxy-10,14,17,17-tetramethyl -11-oxo-6-oxatetracyclo [11.3.1.0~3,10~.0~4,7~] heptadec-13-en-2-yl benzoate
Identifiers
CAS number 33069-62-4
ATC code L01CD01
PubChem 36314
DrugBank APRD00259
Chemical data
Formula C47H51NO14 
Mol. mass 853.906 g/mol
Pharmacokinetic data
Bioavailability 6.5% (oral)[1]
Protein binding 89 to 98%
Metabolism Hepatic (CYP2C8 and CYP3A4)
Half life 5.8 hours
Excretion Fecal and urinary
Therapeutic considerations
Pregnancy cat.

D(US)

Legal status

Rx-=only

Routes iv

Paclitaxel is a mitotic inhibitor used in cancer chemotherapy. It was discovered in a National Cancer Institute program at the Research Triangle Institute in 1967 when Monroe E. Wall and Mansukh C. Wani isolated it from the bark of the Pacific yew tree, Taxus brevifolia and named it 'taxol'. When Bristol-Myers Squibb (BMS) licensed the compound for sale they claimed rights to the name as well and people responded by referring to the generic name as 'paclitaxel', but BMS later lost the court case about naming rights. In this formulation paclitaxel is dissolved in Cremophor EL, a polyoxyethylated castor oil, as a delivery agent since paclitaxel is not soluble in water. A newer formulation, in which paclitaxel is bound to albumin as the delivery agent (Protein-bound paclitaxel), is sold commercially by Abraxis BioScience under the trademark Abraxane.[2]

Paclitaxel is now used to treat patients with lung, ovarian, breast cancer, head and neck cancer, and advanced forms of Kaposi's sarcoma. Paclitaxel is also used for the prevention of restenosis.

Paclitaxel works by interfering with normal microtubule breakdown during cell division. Together with docetaxel, it forms the drug category of the taxanes. It was the subject of a notable total synthesis by Robert A. Holton.

As well as offering substantial improvement in patient care, paclitaxel has been a relatively controversial drug. There was originally concern because of the environmental impact of its original sourcing, no longer used, from the Pacific yew. The assignment of rights, and even the name itself, to BMS were the subject of public debate and Congressional hearings.

Contents

[edit] History

[edit] The plant screening program, isolation, and preclinical trials

Crystal structure of paclitaxel
Crystal structure of paclitaxel[3]

In 1955 the National Cancer Institute (NCI) set up the Cancer Chemotherapy National Service Center (CCNSC) to act as a public screening centre for anti-cancer activity in compounds submitted by external institutions and companies[4] Although the majority of compounds screened were of synthetic origin, one chemist, Jonathan Hartwell, who was employed there from 1958 onwards, had had experience of natural product derived compounds and began a plant screening operation.[5] After some years of informal arrangements, in July 1960 the NCI commissioned USDA botanists to collect samples from about 1000 plant species per year.[6] On August 21, 1962, one of those botanists, Arthur S. Barclay, collected bark from a single Pacific yew tree, Taxus brevifolia, in a forest north of the town of Packwood, Washington as part of a four month trip collecting material from over 200 different species.[7] The material was then processed by a number of specialist CCNSC subcontractors and one of the Taxus samples was found to be cytotoxic in a cellular assay on 22 May 1964.[8]

Accordingly, in late 1964 or early 1965, the fractionation and isolation laboratory run by Monroe E. Wall in Research Triangle Park, North Carolina, began work on fresh Taxus samples, isolating the active ingredient in September 1966 and announcing their findings at an April 1967 American Chemical Society meeting in Miami Beach.[9]. They named the pure compound 'taxol' in June 1967. [10] Wall and his colleague Wani published their results, including the chemical structure, in 1971.[11].

The NCI continued to commission work to collect more Taxus bark and to isolate increasing quantities of taxol. By 1969 28kg of crude extract had been isolated from almost 1,200kg of bark, although this ultimately yielded only 10g of pure material. [12] But for several years no use was made of the compound by the NCI. In 1975 it was shown to be active in another in vitro system ; two years later a new department head reviewed the data and finally recommended that taxol be moved on to the next stage in the discovery process. [13] This required increasing quantities of purified taxol, up to 600g, and in 1977 a further request for 7,000 lbs of bark was made.

In 1978, two NCI researchers published a report showing that taxol was mildly effective in leukaemic mice. [14] In November 1978, taxol was shown to be effective in xenograft studies.[15] Meanwhile taxol began to be well known in the cell biology, as well as the cancer community, with a publication in early 1979 by Susan B. Horwitz, a molecular pharmacologist at Albert Einstein College of Medicine, that showed that taxol had a previously unknown mechanism of action involving the stabilisation of microtubules. Together with formulation problems, this increased interest from researchers meant that by 1980 the NCI envisaged needing to collect 20,000 lbs of bark. [16]. Animal toxicology studies were complete by June 1982, and in November NCI applied for the INDA necessary to begin clinical trials in humans.[17].

[edit] Early clinical trials, supply and the transfer to BMS

Phase I clinical trials began in April 1984 and the decision to start Phase II trials was made a year later.[18] These larger trials needed more bark and collection of a further 12,000 pounds was commissioned, which enabled some phase II trials to begin by the end of 1986. But by then it was recognised that the demand for taxol might be substantial and that more than 60,000 pounds of bark might be needed as a minimum. This unprecedentedly large amount brought ecological concerns about the impact on yew populations into focus for the first time as local politicians and foresters expressed unease at the program[19].

The first public report from a phase II trial in May 1988 showed an effect in melanoma patients and a remarkable response rate of 30% in patients with refractory ovarian cancer.[20]. At this point Gordon Cragg of the NCI's Natural Product Branch calculated that the synthesis of enough taxol to treat all the ovarian cancer and melanoma cases in the US would require the destruction of 360,000 trees annually. For the first time, serious consideration was given to the problem of supply.[21].

Because of the practical and in particular the financial scale of the programme needed, the NCI decided to seek association with a pharmaceutical company, and in August 1989 it published a Cooperative Research and Development Agreement (CRADA) offering its current stock and supply from current bark stocks, together with proprietary access to the data so far collected, to a company willing to commit to providing the funds to collect further raw material, isolate taxol, and fund a large proportion of clinical trials. In the words of Goodman and Welsh, authors of a substantial scholarly book on taxol,

[The NCI] was thinking, not of collaboration, ... but of a hand-over of taxol (and its problems) [22]

Although widely advertised, only four companies responded to the CRADA, including Bristol-Myers Squibb (BMS), who were selected as the partner in December 1989. The choice of BMS later became controversial and was the subject of Congressional hearings in 1991 and 1992. While it seems clear that the NCI had little choice but to seek a commercial partner, there was also controversy about the terms of the deal, eventually leading to a report by the General Accounting Office in 2003 which concluded that the NIH had failed to ensure value for money.[23] In related CRADAs with the USDA and Department of the Interior, Bristol-Myers Squibb were given exclusive first refusal on all Federal supplies of Taxus brevifolia. This exclusive contract lead to some criticism for giving BMS a "cancer monopoly."[24] Eighteen months after the CRADA, BMS filed a new drug application (NDA) which was given FDA approval at the very end of 1992. [25] Although there was no patent on the compound, the provisions of the Waxman-Hatch Act gave Bristol-Myers Squibb five years exclusive marketing rights.

In 1990, Bristol-Myers Squibb applied to trademark the name 'taxol' as Taxol®. This was controversially approved in 1992. At the same time, 'paclitaxel' replaced 'taxol' as the generic name of the compound. Critics, including the journal Nature, argued that the name taxol had been used for more than two decades and in more than 600 scientific articles and suggested that the trademark should not have been awarded and the BMS should renounce its rights to it.[26] BMS argued that changing the name would cause confusion among oncologists and possibly endanger the health of patients. BMS has continued to defend its rights to the name in the courts.[27] BMS have also been criticised for misrepresentation by Goodman and Walsh, who quote from a company report saying that

It was not until 1971 that ... testing ... enabled the isolation of paclitaxel, initially described as 'compound 17'[28]

This quote is strictly speaking accurate: the objection seems to be that this misleadingly neglects to explain that it was the scientist doing the isolation who named the compound taxol and it was not referred to in any other way for more than twenty years.

Annual sales peaked in 2000, reaching US$1.6 billion; paclitaxel is now available in generic form.

[edit] Production

Undisturbed Pacific Yew bark contains paclitaxel and related chemicals.
Undisturbed Pacific Yew bark contains paclitaxel and related chemicals.
The bark is peeled and processed to provide paclitaxel.
The bark is peeled and processed to provide paclitaxel.

From 1967 to 1993, almost all paclitaxel produced was derived from bark from the Pacific yew, the harvesting of which kills the tree in the process. The processes used were descendants of the original isolation method of Wall and Wani; by 1987 the NCI had contracted Hauser Chemical Research of Boulder, Colorado to handle bark on the scale needed for Phase II and III trials. While there was considerable uncertainty about how large the wild population of Taxus brevifola was and what the eventual demand for taxol would be, it had been clear for many years that an alternative, sustainable source of supply would be needed. Initial attempts used needles from the tree, or material from other related Taxus species, including cultivated ones. But these attempts were bedevilled by the relatively low and often highly variable yields obtained. It was not until the early 1990s, at a time of increased sensitivity to the ecology of the forests of the Pacific North West, that taxol was successfully extracted on a clinically useful scale from these sources. [29]

From the late 1970s, chemists in the US and France had been interested in taxol. A number of US groups, including one led by Robert A. Holton, attempted a total synthesis of the molecule, starting from petrochemical-derived starting materials. This work was primarily motivated as a way of generating chemical knowledge, rather than with any expectation of developing a practical production technique. By contrast the French group of Pierre Potier at the CNRS quickly recognised the problem of yield. His laboratory was on a campus populated by the related yew Taxus baccata, so that needles were available locally in large quantity. By 1981 he had shown that it was feasible to isolate relatively large quantities of the compound 10-deacetylbaccatin, a plausible first step for a semi-synthetic production route to taxol. By 1988 he copublished such a semisynthetic route from needles of Taxus baccata.[30] The view of the NCI, however, was that even this route was not practical.[31]

By 1988, and particularly with Potier's publication, it was clear to Holton as well that a practical semi-synthetic production route would be important. By late 1989, Holton's group had developed a semisynthetic route to paclitaxel with twice the yield of the Potier process. Florida State University, where Holton worked, signed a deal with Bristol-Myers Squibb to license this and future patents. In 1992, Holton patented an improved process with an 80% yield. BMS took the process in-house and started to manufacture paclitaxel in Ireland from 10-deacetylbaccatin isolated from the needles of the European yew. [31] In early 1993, BMS were able to announce that they would cease reliance on Pacific yew bark by the end of 1995, effectively terminating the ecological controversy over its use. This announcement also made good their commitment to develop an alternative supply route, made to the NCI in their CRADA application of 1989.

Currently, all paclitaxel production for BMS uses plant cell fermentation (PCF) technology developed by the biotechnology company Phyton and carried out at their plant in Germany.[32] This starts from a specific taxus cell line propagated in aqueous medium in large fermentation tanks. Paclitaxel is then extracted directly, purified by chromatography and isolated by crystallization. Compared to the semisynthesis, PCF eliminates the need for many hazardous chemicals and saves a considerable amount of energy.[33]

In 1993 it was discovered that taxol was coincidentally produced in a newly described fungus living in the yew tree, see: Stierle, A., Gary Strobel, et al. (1993). "Taxol and Taxane Production by Taxomyces-Andreanae, an Endophytic Fungus of Pacific Yew." Science 260(5105): 214-216. It has since been found in a number of other endophytic fungi, including Nodulisporium sylviforme[34], opening the possibility of taxol production by culturing one of these fungal species.

The initial motivation for synthetic approaches to paclitaxel included the opportunity to create closely related compounds. Indeed this approach led to the development of docetaxel.

[edit] Mechanism of action

Paclitaxel interferes with the normal function of microtubule breakdown. Whereas drugs like colchicine cause the depolymerization of microtubules, paclitaxel arrests their function by having the opposite effect; it hyper-stabilizes their structure. This destroys the cell's ability to use its cytoskeleton in a flexible manner. Specifically, paclitaxel binds to the β subunit of tubulin. Tubulin is the "building block" of microtubules, and the binding of paclitaxel locks these building blocks in place. The resulting microtubule/paclitaxel complex does not have the ability to disassemble. This adversely affects cell function because the shortening and lengthening of microtubules (termed dynamic instability) is necessary for their function as a mechanism to transport other cellular components. For example, during mitosis, microtubules position the chromosomes during their replication and subsequent separation into the two daughter-cell nuclei.[35]

Further research has indicated that paclitaxel induces programmed cell death (apoptosis) in cancer cells by binding to an apoptosis stopping protein called Bcl-2 (B-cell leukemia 2) and thus arresting its function.

In addition to stabilizing microtubules paclitaxel may act as a molecular mop by sequestering free tubulin effectively depleting the cells supply of tubulin monomers and/or dimers. This activity may trigger the aforementioned apoptosis.[36]

One common characteristic of most cancer cells is their rapid rate of cell division. In order to accommodate this, the cytoskeleton of a cell undergoes extensive restructuring. Paclitaxel is an effective treatment for aggressive cancers because it adversely affects the process of cell division by preventing this restructuring. Cancer cells are also destroyed by the aforementioned anti-Bcl-2 mechanism. Other cells are also affected adversely, but since cancer cells divide much faster than non-cancerous cells, they are far more susceptible to paclitaxel treatment.

[edit] Clinical use

Taxol is approved in the UK for ovarian cancer, breast cancer, lung cancer. It is also used in the treatment of Kaposi's sarcoma.[37] It is recommended in NICE guidance of June 2001 that it should be used for non-small cell lung cancer in patients unsuitable for curative treatment, and in first-line and second-line treatment of ovarian cancer. In September 2001 NICE recommended that paclitaxel should be available for the treatment of advanced breast cancer after the failure of anthracyclic chemotherapy, but that its first-line use should be limited to clinical trials. In September 2006 NICE recommended that paclitaxel should not be used in the adjuvant treatment of early node-positive breast cancer.[38]

The cost to the NHS per patient in early breast cancer, assuming four cycles of treatment, is about £4000.[39]

[edit] Similar compounds

In January 2005, the Food and Drug Administration (FDA) approved Abraxane®(protein-bound paclitaxel), developed and manufactured by Abraxis BioScience, for the treatment of breast cancer after failure of combination chemotherapy for metastatic disease or relapse within six months of adjuvant chemotherapy. In this preparation, paclitaxel is bonded to albumin as the delivery agent as an alternative to the often toxic solvent delivery method of 'Taxol'.[2] Numerous other Taxol administration techniques are also currently being researched, in an effort to reduce the side effects of Taxol treatment, and increase its effectiveness.

The closely related taxane docetaxel has a similar set of clinical uses to paclitaxel. It is manufactured under a name of Taxotere.

[edit] Restenosis

Paclitaxel is used for the prevention of restenosis (recurrent narrowing) of coronary stents; locally delivered to the wall of the coronary artery, a paclitaxel coating limits the growth of neointima (scar tissue) within stents.[40] Paclitaxel drug eluting coated stents are sold under the trade name Taxus by Boston Scientific in the United States.

[edit] Side Effects

Common side-effects include nausea and vomiting, loss of appetite, change in taste, thinned or brittle hair, pain in the joints of the arms or legs lasting 2-3 days, changes in the color of the nails, tingling in the hands or toes. More serious side effects such as unusual bruising or bleeding, pain/redness/swelling at the injection site, change in normal bowel habits for more than 2 days, fever, chills, cough, sore throat, difficulty swallowing, dizziness, shortness of breath, severe exhaustion, skin rash, facial flushing and chest pain can also occur. A number of these side effects are associated with the excipient used, Cremophor EL, a polyoxyethylated castor oil. Allergies to drugs such as cyclosporine, teniposide and drugs containing polyoxyethylated castor oil may indicate increased risk of adverse reactions to paclitaxel. Dexamethasone is given prior to beginning paclitaxel treatment to mitigate some of the side effects.[41]

In recent years, extensive research has been done to find a way to mitigate the side effects of paclitaxel, by altering its administration. DHA-paclitaxel, PG-paclitaxel, and tumor-activated Taxol prodrugs are undergoing continued testing, and are actually on the way to being introduced into widespread clinical use. Drug Discovery Today reported that Protarga has linked paclitaxel to docosahexaenoic acid, a fatty acid that is easily taken up by tumor cells; the DHA-paclitaxel “appears not to be cytotoxic until the bond with DHA [docosahexaenoic acid] is cleaved within the cell.”[42] The advantage of DHA-paclitaxel over paclitaxel is DHA-paclitaxel’s ability to carry much higher concentrations of paclitaxel to the cells, which are maintained for longer periods in the tumor cells, thus increasing their action. With increased activity, DHA-paclitaxel, also known as Taxoprexin® may have a more successful response in cancer patients than Taxol, and it may be able to treat more types of cancer than Taxol has been able to treat. Drug Discovery Today announced that Cell Therapeutics has formulated PG-paclitaxel, which is paclitaxel bonded to a polyglutamate polymer; tumor cells are significantly more porous to polyglutamate polymers than normal cells, due to the leaky endothelial membranes of tumor cells. PG-paclitaxel has been introduced into clinical use, and has proven to initiate very mild side effects and to effectively treat many patients who were not responsive to the action of Taxol. The PG-paclitaxel may be a very promising anti-cancer drug, as it is much more selective than paclitaxel for which cells it targets.[43] ImmunoGen has been introducing Tumor-Activated Prodrug (TAP™) technology in recent years, and is now working to apply this technology to paclitaxel. Tumor-activated Taxol prodrugs are designed for accurate targeting, by the action of a monoclonal antibody which is very specific to certain cells. Tumor-Activated Taxol prodrugs research is progressing, and in mice, the “taxane-based TAP completely eradicated human tumour xenografts at non-toxic doses.”[44] Taxol research is dramatically growing, as scientists are working to find cures for the terrible cancers that are affecting so many people in the world today.

[edit] Research use

Aside from its direct clinical use, paclitaxel is used extensively in biological and biomedical research as a microtubule stabilizer. In vitro assays involving microtubules, such as motility assays, generally rely on paclitaxel to maintain microtubule integrity in the absence of the various nucleating factors and other stabilizing elements found in the cell. For example, it is used for in vitro tests of drugs that aim to alter the behavior of microtubule motor proteins, or for studies of mutant motor proteins. Paclitaxel is sometimes used for in vivo studies as well; it can be fed to test organisms such as fruit flies or injected into individual cells, to inhibit microtubule disassembly or to increase the number of microtubules in the cell.

[edit] Additional images

[edit] References

  1. ^ Sandra Peltier, S.; Oger, J.-M., Lagarce, F.; Couet, W.; Benoît, J.-P. (June 2006). "Enhanced Oral Paclitaxel Bioavailability After Administration of Paclitaxel-Loaded Lipid Nanocapsules". Pharmaceutical Research 23 (6): 1243–1250. doi:10.1007/s11095-006-0022-2. 
  2. ^ a b "Abraxane Drug Information." Food and Drug Administration. January 7, 2005. Retrieved on March 9, 2007.
  3. ^ Lowe, J (2001). "Refined structure of αβ-tubulin at 3.5 Å resolution". Journal of Molecular Biology 313 (5): 1045–1057. doi:10.1006/jmbi.2001.5077. 
  4. ^ Goodman, Jordan; Walsh, Vivien (2001). The Story of Taxol: Nature and Politics in the Pursuit of an Anti-Cancer Drug. Cambridge University Press. ISBN 0 521 56123 X. , p17
  5. ^ Goodman and Walsh, p22
  6. ^ Goodman and Walsh p25, p28
  7. ^ Goodman and Walsh, p51
  8. ^ Goodman and Walsh, p51
  9. ^ Wall ME, Wani MC (1995). "Camptothecin and taxol: discovery to clinic--thirteenth Bruce F. Cain Memorial Award Lecture". Cancer Res. 55 (4): 753-60. PMID 7850785. 
  10. ^ Goodman and Walsh p51
  11. ^ Wani M, Taylor H, Wall M, Coggon P, McPhail A (1971). "Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia". J Am Chem Soc 93 (9): 2325-2327. doi:10.1021/ja00738a045. PMID 5553076. 
  12. ^ Goodman and Walsh p81
  13. ^ Goodman and Walsh p79, p81
  14. ^ Fuchs, David A and Johnson, Randall K (1978). "Cytologic evidence that taxol, an antineoplastic agent from Taxus brevifolia, acts as a mitotic spindle poison". Cancer Treatment Reports 62: 1219-1222. PMID 688258. 
  15. ^ Goodman and Walsh 95
  16. ^ Goodman and Walsh p97
  17. ^ Goodman and Walsh p97
  18. ^ Goodman and Walsh 115
  19. ^ Goodman and Walsh 120
  20. ^ Rowinsky, EK and others (1988). "Phase II study of taxol in advanced epithelial malignancies". Proceedings of the Association of Clinical Oncology 7: 136. 
  21. ^ Goodman and Walsh 120
  22. ^ Goodman and Walsh p120
  23. ^ Technology Transfer: NIH-Private Sector Partnership in the Development of Taxol.
  24. ^ Nader, Ralph; Love, James. "Looting the medicine chest: how Bristol-Myers Squibb made off with the public's cancer research." The Progressive. February, 1993. Retrieved on March 9, 2007.
  25. ^ Goodman and Walsh p120
  26. ^ "Names for hi-jacking" (1995). Nature 373 (6513): 370. doi:10.1038/373370a0. PMID 7830775. 
  27. ^ Goodman and Walsh p170
  28. ^ Bristol-Myers Squibb, The development of Taxol®(paclitaxel), March 1997, as cited in Goodman and Walsh p2
  29. ^ Goodman and Walsh pp172-175
  30. ^ Goodman and Walsh pp100-101
  31. ^ a b Stephenson, Frank (Fall). "A tale of taxol". Florida State University Research In Review 12. 
  32. ^ Phyton news release.
  33. ^ 2004 Greener Synthetic Pathways Award: Bristol-Myers Squibb Company: Development of a Green Synthesis for Taxol® Manufacture via Plant Cell Fermentation and Extraction.
  34. ^ Zhao, K.; et al. "Study on the Preparation and Regeneration of Protoplast from Taxol-producing Fungus Nodulisporium sylviforme'." Nature and Science. 2004. 2 (2). pp. 52-59.
  35. ^ Kumar, N. "Taxol-induced Polymerization of Purified Tubulin." Journal of Biological Chemistry. 1981. Vol. 256, No. 20, 10435-10441.
  36. ^ Foss M, Wilcox BWL, Alsop GB, Zhang D (2008) Taxol Crystals Can Masquerade as Stabilized Microtubules. PLoS ONE 3(1): e1476 doi:10.1371/journal.pone.0001476
  37. ^ Saville M, Lietzau J, Pluda J, Feuerstein I, Odom J, Wilson W, Humphrey R, Feigal E, Steinberg S, Broder S (July 1 1995). "Treatment of HIV-associated Kaposi's sarcoma with paclitaxel.". Lancet 346 (8966): 26-8. doi:10.1016/S0140-6736(95)92654-2. PMID 7603142. 
  38. ^ British National Formulary.
  39. ^ NICE Guidance TA108.
  40. ^ Heldman A, Cheng L, Jenkins G, Heller P, Kim D, Ware M, Nater C, Hruban R, Rezai B, Abella B, Bunge K, Kinsella J, Sollott S, Lakatta E, Brinker J, Hunter W, Froehlich J (2001). "Paclitaxel stent coating inhibits neointimal hyperplasia at 4 weeks in a porcine model of coronary restenosis.". Circulation 103 (18): 2289-95. PMID 11342479. 
  41. ^ "Medline Plus Entry for Taxol." MEDLINE. Last revised on April 1, 2003. Retrieved on March 9, 2007.
  42. ^ Whelan, Jo. Drug Discovery Today, Volume 7, Issue 2, 15 January 2002, Pages 90-92.
  43. ^ Whelan, Jo. Drug Discovery Today, Volume 7, Issue 2, 15 January 2002, Pages 90-92.
  44. ^ Whelan, Jo. Drug Discovery Today, Volume 7, Issue 2, 15 January 2002, Pages 90-92.

[edit] External links