Observed information

From Wikipedia, the free encyclopedia

In statistics, the Observed Information is the negative of the second derivative of the log-likelihood.

[edit] Definition

Suppose we observe random variables X_1,\ldots,X_n, independent and identically distributed with density f(X; θ), where θ is a (possibly unknown) vector. Then the log-likelihood of the parameters θ given the data X_1,\ldots,X_n is

l(\theta | X_1,\ldots,X_n) = \sum_{i=1}^n \log f(X_i| \theta) .

We define the Observed Information Matrix at θ * as

\mathcal{J}(\theta^*) 
  = - \left. 
    \nabla \nabla^{\top} 
    l(\theta)
  \right|_{\theta=\theta^*}
= -
\left.
\left( \begin{array}{cccc}
  \tfrac{\partial^2}{\partial \theta_1^2}
  &  \tfrac{\partial^2}{\partial \theta_1 \partial \theta_2}
  &  \cdots
  &  \tfrac{\partial^2}{\partial \theta_1 \partial \theta_n} \\
  \tfrac{\partial^2}{\partial \theta_2 \partial \theta_1}
  &  \tfrac{\partial^2}{\partial \theta_2^2}
  &  \cdots
  &  \tfrac{\partial^2}{\partial \theta_2 \partial \theta_n} \\
  \vdots &
  \vdots &
  \ddots &
  \vdots \\
  \tfrac{\partial^2}{\partial \theta_n \partial \theta_1}
  &  \tfrac{\partial^2}{\partial \theta_n \partial \theta_2}
  &  \cdots
  &  \tfrac{\partial^2}{\partial \theta_n^2} \\
\end{array} \right) 
l(\theta)
\right|_{\theta = \theta^*}

[edit] Fisher Information

If \mathcal{I}(\theta) is the Fisher Information, then

\mathcal{I}(\theta) = \mathrm{E}(\mathcal{J}(\theta)).