Numt
From Wikipedia, the free encyclopedia
Numt (pronounced “new might”) is an abbreviated term for “nuclear mitochondrial DNA”, which describes any transfer or “transposition” of cytoplasmic mitochondrial DNA sequences into the separate nuclear genome of a eukaryotic organism. As whole genome sequencing projects accumulate, more and more Numts have been detected in many diverse eukaryotic organisms (see http://www.pseudogene.net for one list of examples).
The first use of the term was made to describe a transposition of approximately 7.9 kilobase pairs of the cytoplasmic mtDNA genome into the nucleus of the domestic cat (Felis silvestris catus), where Numt is tandemly repeated, 38-76 times at a single genomic locus on cat chromosome D2[1]. Many Numts are transcriptionally inactive similar to some satellite (or junk) DNA, though they may be considered as part of the Serial Endosymbiosis Theory (SET) or endosymbiotic theory for the origin of eukaryotic cells and organelles.
[edit] Notes
- ^ Lopez, J.V., Yuhki, N., Modi, W., Masuda, R., O'Brien, S.J. (1994). "Numt, a recent transfer and tandem amplification of mitochondrial DNA in the nuclear genome of the domestic cat". Journal of Molecular Evolution 39: 171–190.
[edit] References
- Bensasson D, Zhang D, Hartl DL, Hewitt GM. (1 Jun 2001). "Mitochondrial pseudogenes: evolution's misplaced witnesses". Trends in Ecology and Evolution 16 (6): 314–321. doi: .
- Ricchetti M, Tekaia F, Dujon B. (7 Sep 2004). "Continued colonization of the human genome by mitochondrial DNA". PLoS Biol 2 (9): E273.
- Richly E, Leister D. (21 Jun 2004). "NUMTs in sequenced eukaryotic genomes". Molecular Biology and Evolution 21 (6): 1081–4. doi: .