NOX3
From Wikipedia, the free encyclopedia
NADPH oxidase 3
|
||||||||||||||
Identifiers | ||||||||||||||
Symbol(s) | NOX3; GP91-3 | |||||||||||||
External IDs | OMIM: 607105 MGI: 2681162 HomoloGene: 49435 | |||||||||||||
|
||||||||||||||
RNA expression pattern | ||||||||||||||
Orthologs | ||||||||||||||
Human | Mouse | |||||||||||||
Entrez | 50508 | 224480 | ||||||||||||
Ensembl | ENSG00000074771 | ENSMUSG00000023802 | ||||||||||||
Uniprot | Q9HBY0 | Q672J9 | ||||||||||||
Refseq | NM_015718 (mRNA) NP_056533 (protein) |
NM_198958 (mRNA) NP_945196 (protein) |
||||||||||||
Location | Chr 6: 155.76 - 155.82 Mb | Chr 17: 3.59 - 3.65 Mb | ||||||||||||
Pubmed search | [1] | [2] |
NADPH oxidase 3, also known as NOX3, is a human gene.[1]
NADPH oxidases, such as NOX3, are plasma membrane-associated enzymes found in many cell types. They catalyze the production of superoxide by a 1-electron reduction of oxygen, using NADPH as the electron donor.[supplied by OMIM][1]
[edit] References
[edit] Further reading
- Lachgar A, Sojic N, Arbault S, et al. (1999). "Amplification of the inflammatory cellular redox state by human immunodeficiency virus type 1-immunosuppressive tat and gp160 proteins.". J. Virol. 73 (2): 1447–52. PMID 9882350.
- Kikuchi H, Hikage M, Miyashita H, Fukumoto M (2000). "NADPH oxidase subunit, gp91(phox) homologue, preferentially expressed in human colon epithelial cells.". Gene 254 (1-2): 237–43. PMID 10974555.
- Cheng G, Cao Z, Xu X, et al. (2001). "Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5.". Gene 269 (1-2): 131–40. PMID 11376945.
- Mungall AJ, Palmer SA, Sims SK, et al. (2003). "The DNA sequence and analysis of human chromosome 6.". Nature 425 (6960): 805–11. doi: . PMID 14574404.
- Cheng G, Ritsick D, Lambeth JD (2004). "Nox3 regulation by NOXO1, p47phox, and p67phox.". J. Biol. Chem. 279 (33): 34250–5. doi: . PMID 15181005.
- Jana A, Pahan K (2005). "Human immunodeficiency virus type 1 gp120 induces apoptosis in human primary neurons through redox-regulated activation of neutral sphingomyelinase.". J. Neurosci. 24 (43): 9531–40. doi: . PMID 15509740.
- Ueno N, Takeya R, Miyano K, et al. (2005). "The NADPH oxidase Nox3 constitutively produces superoxide in a p22phox-dependent manner: its regulation by oxidase organizers and activators.". J. Biol. Chem. 280 (24): 23328–39. doi: . PMID 15824103.
- Ueyama T, Geiszt M, Leto TL (2006). "Involvement of Rac1 in activation of multicomponent Nox1- and Nox3-based NADPH oxidases.". Mol. Cell. Biol. 26 (6): 2160–74. doi: . PMID 16507994.
- Carnesecchi S, Carpentier JL, Foti M, Szanto I (2006). "Insulin-induced vascular endothelial growth factor expression is mediated by the NADPH oxidase NOX3.". Exp. Cell Res. 312 (17): 3413–24. doi: . PMID 16949073.
- Nakano Y, Banfi B, Jesaitis AJ, et al. (2007). "Critical roles for p22phox in the structural maturation and subcellular targeting of Nox3.". Biochem. J. 403 (1): 97–108. doi: . PMID 17140397.
- Chen G, Adeyemo AA, Zhou J, et al. (2007). "A genome-wide search for linkage to renal function phenotypes in West Africans with type 2 diabetes.". Am. J. Kidney Dis. 49 (3): 394–400. doi: . PMID 17336700.