Neyman-Pearson lemma

From Wikipedia, the free encyclopedia

In statistics, the Neyman-Pearson lemma states that when performing a hypothesis test between two point hypotheses H0θ=θ0 and H1θ=θ1, then the likelihood-ratio test which rejects H0 in favour of H1 when

\Lambda(x)=\frac{ L( \theta _{0} \mid x)}{ L (\theta _{1} \mid x)} \leq \eta \mbox{ where } P(\Lambda(X)\leq \eta|H_0)=\alpha

is the most powerful test of size α for a threshold η. If the test is most powerful for all \theta_1 \in \Theta_1, it is said to be uniformly most powerful (UMP) for alternatives in the set \Theta_1 \, .

In practice, the likelihood ratio is often used directly to construct tests — see Likelihood-ratio test. However it can also be used to suggest particular test-statistics that might be of interest or to suggest simplified tests — for this one considers algebraic manipulation of the ratio to see if there are key statistics in it is related to the size of the ratio (i.e. whether a large statistic corresponds to a small ratio or to a large one).

Contents

[edit] Example

Let X_1,\dots,X_n be a random sample from the N(μ,σ2) distribution where μ is known, and suppose that we wish to test for H_0:\sigma^2=\sigma_0^2 against H_1:\sigma^2=\sigma_1^2.

The likelihood for this set of normally distributed data is

L\left(\sigma^2;\mathbf{x}\right)\propto \left(\sigma^2\right)^{-n/2} \exp\left\{-\frac{\sum_{i=1}^n \left(x_i-\mu\right)^2}{2\sigma^2}\right\}.

We can compute the likelihood ratio to find the key statistic in this test and its effect on the test's outcome:

\Lambda(\mathbf{x}) = \frac{L\left(\sigma_1^2;\mathbf{x}\right)}{L\left(\sigma_0^2;\mathbf{x}\right)} = 
\left(\frac{\sigma_1^2}{\sigma_0^2}\right)^{-n/2}\exp\left\{-\frac{1}{2}(\sigma_1^{-2}-\sigma_0^{-2})\sum_{i=1}^n \left(x_i-\mu\right)^2\right\}.

This ratio only depends on the data through \sum_{i=1}^n \left(x_i-\mu\right)^2. Therefore, by the Neyman-Pearson lemma, the most powerful test of this type of hypothesis for this data will depend only on \sum_{i=1}^n \left(x_i-\mu\right)^2. Also, by inspection, we can see that if \sigma_1^2>\sigma_0^2, then \Lambda(\mathbf{x}) is a decreasing function of \sum_{i=1}^n \left(x_i-\mu\right)^2. So we should reject H0 if \sum_{i=1}^n \left(x_i-\mu\right)^2 is sufficiently small. The rejection threshold depends on the size of the test.

[edit] See also

[edit] References

[edit] External links