Nephelauxetic effect
From Wikipedia, the free encyclopedia
The nephelauxetic effect is a term used in the physical chemistry of transition metals. It refers to a decrease in the Racah interelectronic repulsion parameter, given the symbol B, that occurs when a transition metal free ion forms a complex with ligands. The name comes from the Greek for cloud-expanding.
The decrease in B indicates that in a complex there is less repulsion between the two electrons in a given doubly-occupied metal d-orbital than there is in the respective Mn+ gaseous metal ion, which in turn implies that the size of the orbital is larger in the complex. This electron cloud expansion effect may occur for one (or both) of two reasons:
- The effective positive charge on the metal has decreased. Because the positive charge of the metal is reduced by any negative charge on the ligands, the d-orbitals can expand slightly.
- The act of overlapping with ligand orbitals and forming covalent bonds increases orbital size, because the resulting molecular orbital is formed from two atomic orbitals.
Experimentally, it is observed that size of the nephelauxetic effect always follows a certain trend with respect to the nature of the ligands present, increasing thus:
Although parts of this series may seem quite similar to the spectrochemical series of ligands - for example, cyanide, ethylendiamine, and fluoride seem to occupy similar positions in the two - others such as chloride, iodide and bromide, amongst others, occupy very different positions. The ordering roughly reflects the ability of the ligands to form good covalent bonds with metals - those that do not have a very small effect and are at the start of the series, whereas those that do are at the end.
The nephelauxetic effect does not only depend upon the ligand type, but also upon the central metal ion. These too can be arranged in order of increasing nephelauxetic effect as follows:
- Mn(II) < Ni(II) ≈ Co(II) < Mo(II) < Re(IV) < Fe(III) < Ir(III) < Co(III) < Mn(IV)
[edit] See also
[edit] References
- Housecroft C.E. and Sharpe A.G., Inorganic Chemistry, 2nd Edition, England, Pearson Education Limited, 2005, Page 578