Multiply perfect number

From Wikipedia, the free encyclopedia

Divisibility-based
sets of integers
Form of factorization:
Prime number
Composite number
Powerful number
Square-free number
Achilles number
Constrained divisor sums:
Perfect number
Almost perfect number
Quasiperfect number
Multiply perfect number
Hyperperfect number
Superperfect number
Unitary perfect number
Semiperfect number
Primitive semiperfect number
Practical number
Numbers with many divisors:
Abundant number
Highly abundant number
Superabundant number
Colossally abundant number
Highly composite number
Superior highly composite number
Other:
Deficient number
Weird number
Amicable number
Friendly number
Sociable number
Solitary number
Sublime number
Harmonic divisor number
Frugal number
Equidigital number
Extravagant number
See also:
Divisor function
Divisor
Prime factor
Factorization
This box: view  talk  edit

In mathematics, a multiply perfect number (also called multiperfect number or pluperfect number) is a generalization of a perfect number.

For a given natural number k, a number n is called k-perfect (or k-fold perfect) if and only if the sum of all positive divisors of n (the divisor function, σ(n)) is equal to kn; a number is thus perfect if and only if it is 2-perfect. A number that is k-perfect for a certain k is called a multiply perfect number. As of July 2004, k-perfect numbers are known for each value of k up to 11.

It can be proven that:

  • For a given prime number p, if n is p-perfect and p does not divide n, then pn is (p+1)-perfect. This implies that an integer n is a 3-perfect number divisible by 2 but not by 4, if and only if n/2 is an odd perfect number, of which none are known.
  • If 3n is 4k-perfect and 3 does not divide n, then n is 3k-perfect.

[edit] Smallest k-perfect numbers

The following table gives an overview of the smallest k-perfect numbers for k <= 7 (cf. Sloane's A007539):

k Smallest k-perfect number Found by
1 1 ancient
2 6 ancient
3 120 ancient
4 30240 René Descartes, circa 1638
5 14182439040 René Descartes, circa 1638
6 154345556085770649600 Robert Daniel Carmichael, 1907
7 141310897947438348259849402738 485523264343544818565120000 TE Mason, 1911

For example, 120 is 3-perfect because the sum of the divisors of 120 is
1+2+3+4+5+6+8+10+12+15+20+24+30+40+60+120 = 360 = 3 × 120.

[edit] External links