Talk:Moving magnet and conductor problem

From Wikipedia, the free encyclopedia

WikiProject Physics This article is within the scope of WikiProject Physics, which collaborates on articles related to physics.
??? This article has not yet received a rating on the assessment scale. [FAQ]
??? This article has not yet received an importance rating within physics.

Help with this template Please rate this article, and then leave comments to explain the ratings and/or to identify its strengths and weaknesses.

Hi Steve: Although you have clarified the relation between the two frames, the notion of a "paradox" got lost in the process. The article was intended to suggest a paradox that led to the need to modify mechanics. Instead, it now is a discussion of transformations. Brews ohare (talk) 06:24, 15 April 2008 (UTC)

Hmm. In point of fact, there isn't any paradox; I figured that the top would explain why one might think there was a paradox, and the rest of the article should systematically explain it and make it clear that there's nothing paradoxical. But I guess I've never really understood what this article is trying to do and say. You're welcome to change it back if you want. --Steve (talk) 17:59, 15 April 2008 (UTC)
I think the interesting point that I was trying to make when I started this article was that
  1. the laws of electrodynamics and the mechanics at the time of the development of special relativity were inconsistent with each other, so one or the other of the other of the two theories would have to be modified, and
  2. surprisingly, it turned out that it was mechanics that had to be modified rather than the new theory of electrodynamics. Complexica (talk) 20:49, 23 May 2008 (UTC)
Ah, that's different from the reason that I learned for what the "moving magnet and conductor problem" is, which I guess came from Griffiths' textbook, and also Einstein's relativity paper. There, everything's done to lowest order in v/c, and you use Galilean transformations, and everything's consistent, but the "problem" is that what's an electric force in one frame is a magnetic force in another, and it's an unexplained coincidence that these forces should happen to be exactly the same in magnitude.
In the pedagogical presentation I'm familiar with, the "problem" you're referring to is, the "constancy of the speed of light" problem. Of course, any situation where you change the frame of reference will have inconsistencies if you use Maxwell's equations and Galilean transformations. But the constancy of the speed of light is where it's most obvious and simple, moreso than in the moving magnet and conductor problem. --Steve (talk) 17:40, 24 May 2008 (UTC)