Monoid ring

From Wikipedia, the free encyclopedia

In abstract algebra, a monoid ring is a new ring constructed from some other ring and a monoid.

[edit] Definition

Let R be a ring and G be a monoid. Consider all the functions φ  : GR such that the set {g: φ(g) ≠ 0} is finite. Let all such functions be element-wise addable. We can define multiplication by (φ * ψ)(g) = Σkl=gφ(k)ψ(l). The set of all such functions φ, together with these two operations, forms a ring, the monoid ring of R over G denoted R[G]. If G is a group, then R[G] denotes the group ring of R over G.

Less rigorously but more simply, an element of R[G] is a polynomial in G over R, hence the notation. We multiply elements as polynomials, taking the product in G of the "indeterminates" and gathering terms:

(\Sigma_i r_i g_i) \cdot (\Sigma_j s_j h_j) = \Sigma_{i,j} r_i s_j (g_i h_j),

where risj is the R-product and gihj is the G-product.

The ring R can be embedded in the ring R[G] via the ring homomorphism T : RR[G] defined by

T(r)(1G) = r, T(r)(g) = 0 for g ≠ 1G.

where 1G is the identity element of G.

There also exists a canonical homomorphism going the other way, called the augmentation. It is the map ηR:R[G] → R ,defined by

\sum_{g\in G} r_g g \rightarrow \sum_{g\in G} r_g


The kernel of this homomorphism, the augmentation ideal, is denoted by JR(G). It is a free R-module generated by the elements 1 - g, for g in G.

[edit] Examples

Given a ring R and the monoid of the natural numbers N ({xn} viewed multiplicatively), we obtain the ring R[{xn}] =: R[x] of polynomials over R.

[edit] References

  • Lang, Serge (2002). Algebra, (Rev. 3rd ed.), Graduate Texts in Mathematics 211, New York: Springer. ISBN 0-387-95385-X. 
Languages