Image:Moebius Surface 1 Display Small.png

From Wikipedia, the free encyclopedia

Wikimedia Commons logo This is a file from the Wikimedia Commons. The description on its description page there is shown below.
Commons is a freely licensed media file repository. You can help.
Description

A moebius strip parametrized by the following equations:

x = \cos u + v\cos\frac{nu}{2}\cos u
y = \sin u + v\cos\frac{nu}{2}\sin u
z = v\sin\frac{nu}{2},

where n=1.

This plot is for display purposes by itself as a thumbnail. If you are looking for the image that is part of the sequence from n=0 to 1, see below for the other verison, along with a larger version (800px) of this image

Source

Self-made, with Mathematica 5.1 Template:Mathemetica

Date

19/06/2007

Author

Inductiveload

Permission
(Reusing this image)
Public domain I, the copyright holder of this work, hereby release it into the public domain. This applies worldwide.

In case this is not legally possible:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.


Afrikaans | Alemannisch | Aragonés | العربية | Asturianu | Български | Català | Česky | Cymraeg | Dansk | Deutsch | Eʋegbe | Ελληνικά | English | Español | Esperanto | Euskara | Estremeñu | فارسی | Français | Galego | 한국어 | हिन्दी | Hrvatski | Ido | Bahasa Indonesia | Íslenska | Italiano | עברית | Kurdî / كوردی | Latina | Lietuvių | Latviešu | Magyar | Македонски | Bahasa Melayu | Nederlands | ‪Norsk (bokmål)‬ | ‪Norsk (nynorsk)‬ | 日本語 | Polski | Português | Ripoarisch | Română | Русский | Shqip | Slovenčina | Slovenščina | Српски / Srpski | Svenska | ไทย | Tagalog | Türkçe | Українська | Tiếng Việt | Walon | ‪中文(简体)‬ | ‪中文(繁體)‬ | zh-yue-hant | +/-

Other versions

Image:Icon Mathematical Plot.svg      Mathematical Function Plot
Description Moebius Strip, 1 half-turn (n=1)
Equation :x = \cos u + v\cos\frac{nu}{2}\cos u
y = \sin u + v\cos\frac{nu}{2}\sin u
z = v\sin\frac{nu}{2}
Co-ordinate System Cartesian (Parametric Plot)
u Range 0 .. 4π
v Range 0 .. 0.3

[edit] Mathematica Code

Please be aware that at the time of uploading (15:27, 19 June 2007 (UTC)), this code may take a significant amount of time to execute on a consumer-level computer.
This uses Chris Hill's antialiasing code to average pixels and produce a less jagged image. The original code can be found here.

This code requires the following packages:

<<Graphics`Graphics`
MoebiusStrip[r_:1] =
    Function[
      {u, v, n},
      r {Cos[u] + v Cos[n u/2]Cos[u],
          Sin[u] + v Cos[n u/2]Sin[u],
          v Sin[n u/2],
          {EdgeForm[AbsoluteThickness[4]]}}];

aa[gr_] := Module[{siz, kersiz, ker, dat, as, ave, is, ar},
    is = ImageSize /. Options[gr, ImageSize];
    ar = AspectRatio /. Options[gr, AspectRatio];
    If[! NumberQ[is], is = 288];
    kersiz = 4;
    img = ImportString[ExportString[gr, "PNG", ImageSize -> (
      is kersiz)], "PNG"];
    siz = Reverse@Dimensions[img[[1, 1]]][[{1, 2}]];
    ker = Table[N[1/kersiz^2], {kersiz}, {kersiz}];
    dat = N[img[[1, 1]]];
    as = Dimensions[dat];
    ave = Partition[Transpose[Flatten[ListConvolve[ker, dat[[All, All, #]]]] \
& /@ Range[as[[3]]]], as[[2]] - kersiz + 1];
    ave = Take[ave, Sequence @@ ({1, Dimensions[ave][[#]], 
    kersiz} & /@ Range[Length[Dimensions[ave]] - 1])];
    Show[Graphics[Raster[ave, {{0, 0}, siz/kersiz}, {0, 255}, ColorFunction ->
     RGBColor]], PlotRange -> {{0, siz[[1]]/kersiz}, {
  0, siz[[2]]/kersiz}}, ImageSize -> is, AspectRatio -> ar]
    ]

deg = 1;
gr = ParametricPlot3D[Evaluate[MoebiusStrip[][u, v, deg]],
      {u, 0, 4π},
      {v, 0, .3},
      PlotPoints -> {99, 3},
      PlotRange -> {{-1.3, 1.3}, {-1.3, 1.3}, {-0.7, 0.7}},
      Boxed -> False,
      Axes -> False,
      ImageSize -> 220,
      PlotRegion -> {{-0.22, 1.15}, {-0.5, 1.4}},
      DisplayFunction -> Identity
      ];
finalgraphic = aa[gr];

Export["Moebius Surface " <> ToString[deg] <> ".png", finalgraphic]

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeDimensionsUserComment
current15:31, 19 June 2007180×140 (16 KB)Inductiveload
15:30, 19 June 2007200×150 (18 KB)Inductiveload
15:27, 19 June 2007200×150 (18 KB)Inductiveload ({{Information |Description=A moebius strip parametrized by the following equations: :<math>x = \cos u + v\cos\frac{nu}{2}\cos u</math> :<math>y = \sin u + v\cos\frac{nu}{2}\sin u</math> :<math>z = v\sin\frac{nu}{2}</math>, where ''n''=1. This plot is for)
The following pages on the English Wikipedia link to this file (pages on other projects are not listed):