Minor (linear algebra)

From Wikipedia, the free encyclopedia

In linear algebra, a minor of a matrix A is the determinant of some smaller square matrix, cut down from A.

Contents

[edit] Detailed definition

Let A be an m × n matrix and k an integer with 0 < km, and kn. A k × k minor of A is the determinant of a k × k matrix obtained from A by deleting mk rows and nk columns.

Since there are

{m \choose k} (read "m choose k")

ways to choose k rows from m rows, and there are

{n \choose k}

ways to choose k columns from n columns, there are a total of

{m \choose k} \cdot {n \choose k}

minors of size k × k.

[edit] Nomenclature

A minor that is formed by removing only one row and column from a matrix A is called a first minor. When two rows and columns are now removed, this is called a second minor. [1]

[edit] Cofactors

The (n − 1) × (n − 1) minor (often denoted Mij) of an n × n square matrix is defined as the determinant of the matrix formed by removing the ith row and the jth column.

The cofactor Cij of a square matrix A is just (−1)i + j times the corresponding minor:

Cij = (−1)i + j Mij

The transpose of the matrix C of cofactors is called the adjugate matrix.

[edit] Example

For example, given the matrix

\begin{pmatrix}
\,\,\,1 & 4 & 7 \\
\,\,\,3 & 0 & 5 \\
-1 & 9 & \!11 \\
\end{pmatrix}

suppose we wish to find the cofactor C23. The minor M23 is the determinant of the above matrix with row 2 and column 3 removed (the following is not standard notation):

 \begin{vmatrix}
\,\,1 & 4 & \Box\, \\
\,\Box & \Box & \Box\, \\
-1 & 9 & \Box\, \\
\end{vmatrix} yields \begin{vmatrix}
\,\,\,1 & 4\, \\
-1 & 9\, \\
\end{vmatrix} = (9-(-4)) = 13.

where the vertical bars around the matrix indicate that the determinant should be taken. Thus, C23 is (-1)2+3 M23  = -13  \!\

[edit] Applications

The cofactors feature prominently in Laplace's formula for the expansion of determinants. If all the cofactors of a square matrix A are collected to form a new matrix of the same size and then transposed, one obtains the adjugate of A, which is useful in calculating the inverse of small matrices.

Given an m × n matrix with real entries (or entries from any other field) and rank r, then there exists at least one non-zero r × r minor, while all larger minors are zero.

We will use the following notation for minors: if A is an m × n matrix, I is a subset of {1,...,m} with k elements and J is a subset of {1,...,n} with k elements, then we write [A]I,J for the k × k minor of A that corresponds to the rows with index in I and the columns with index in J.

  • If I = J, then [A]I,J is called a principal minor.
  • If the matrix that corresponds to a principal minor is a quadratic upper-left part of the larger matrix (i.e., it consists of matrix elements in rows and columns from 1 to k), then the principal minor is called a leading principal minor. For an n × n square matrix, there are n leading principal minors.
  • For Hermitian matrices, the principal minors can be used to test for positive definiteness.

Both the formula for ordinary matrix multiplication and the Cauchy-Binet formula for the determinant of the product of two matrices are special cases of the following general statement about the minors of a product of two matrices. Suppose that A is an m × n matrix, B is an n × p matrix, I is a subset of {1,...,m} with k elements and J is a subset of {1,...,p} with k elements. Then

[\mathbf{AB}]_{I,J} = \sum_{K} [\mathbf{A}]_{I,K} [\mathbf{B}]_{K,J}\,

where the sum extends over all subsets K of {1,...,n} with k elements. This formula is a straightforward corollary of the Cauchy-Binet formula.

[edit] Multilinear algebra approach

A more systematic, algebraic treatment of the minor concept is given in multilinear algebra, using the wedge product: the k-minors of a matrix are the entries in the kth exterior power map.

If the columns of a matrix are wedged together k at a time, the k × k minors appear as the components of the resulting k-vectors. For example, the 2 × 2 minors of the matrix

\begin{pmatrix}
1 & 4 \\
3 & \!\!-1 \\
2 & 1 \\
\end{pmatrix}

are −13 (from the first two rows), −7 (from the first and last row), and 5 (from the last two rows). Now consider the wedge product

(\mathbf{e}_1 + 3\mathbf{e}_2 +2\mathbf{e}_3)\wedge(4\mathbf{e}_1-\mathbf{e}_2+\mathbf{e}_3)

where the two expressions correspond to the two columns of our matrix. Using the properties of the wedge product, namely that it is bilinear and

\mathbf{e}_i\wedge \mathbf{e}_i = 0

and

\mathbf{e}_i\wedge \mathbf{e}_j = - \mathbf{e}_j\wedge \mathbf{e}_i,

we can simplify this expression to

 -13 \mathbf{e}_1\wedge \mathbf{e}_2 -7 \mathbf{e}_1\wedge \mathbf{e}_3 +5 \mathbf{e}_2\wedge \mathbf{e}_3

where the coefficients agree with the minors computed earlier.

[edit] References

  1. ^ Burnside, William Snow & Panton, Arthur William (1886) Theory of Equations: with an Introduction to the Theory of Binary Algebraic Form, http://books.google.com/books?id=BhgPAAAAIAAJ&pg=PA239&lpg=PA239&dq=first+minor+determinant&source=web&ots=BqWTlFMGIB&sig=aeCdnU1sARW9tshE_zhirJZ5dRU&hl=en