Image:Midpoint method illustration.png
From Wikipedia, the free encyclopedia
Size of this preview: 670 × 600 pixels
Full resolution (1,863 × 1,667 pixels, file size: 65 KB, MIME type: image/png)
This is a file from the Wikimedia Commons. The description on its description page there is shown below.
|
Description |
Illustration of Midpoint method |
---|---|
Source |
self-made |
Date | |
Author | |
Permission (Reusing this image) |
see below |
I, the copyright holder of this work, hereby release it into the public domain. This applies worldwide. In case this is not legally possible: Afrikaans | Alemannisch | Aragonés | العربية | Asturianu | Български | Català | Česky | Cymraeg | Dansk | Deutsch | Eʋegbe | Ελληνικά | English | Español | Esperanto | Euskara | Estremeñu | فارسی | Français | Galego | 한국어 | हिन्दी | Hrvatski | Ido | Bahasa Indonesia | Íslenska | Italiano | עברית | Kurdî / كوردی | Latina | Lietuvių | Latviešu | Magyar | Македонски | Bahasa Melayu | Nederlands | Norsk (bokmål) | Norsk (nynorsk) | 日本語 | Polski | Português | Ripoarisch | Română | Русский | Shqip | Slovenčina | Slovenščina | Српски / Srpski | Svenska | ไทย | Tagalog | Türkçe | Українська | Tiếng Việt | Walon | 中文(简体) | 中文(繁體) | zh-yue-hant | +/- |
[edit] Source code
% illustration of numerical integration % compare the Forward Euler method, which is globally O(h) % with Midpoint method, which is globally O(h^2) % and the exact solution function main() f = inline ('2-y', 't', 'y'); % will solve y' = f(t, y) a=0; b=1; % endpoints of the interval where we will solve the ODE A = -0.5*b; B = 1.5*b; % a bit of an expanded interval N = 2; T = linspace(a, b, N); h = T(2)-T(1); % the grid y0 = 1; % initial condition % % One step of the midpoint method Y = solve_ODE (N, f, y0, h, T, 2); % midpoint method % exact solution to the right hh=0.05; TT = a:hh:B; NN = length(TT); YY = solve_ODE (NN, f, y0, hh, TT, 2); % midpoint method % exact solution to the left TTl = a:hh:(-A); NN = length(TTl); ZZ = solve_ODE (NN, f, y0, -hh, TTl, 2); % midpoint method % the tangent line at the midpoint tmid = (a+b)/2; I = find(TT >= tmid); m = I(1); tmid = TT(m); ymid = YY(m); slope = f(tmid, ymid); Tan_l = 0.5*b; Tant = (tmid-Tan_l):hh:(tmid+Tan_l); Tany = slope*(Tant-tmid)+ymid; % prepare the plotting window lw = 3; % curves linewidth lw_thin = 2; % thinner curves fs = 30; % font size figure(1); clf; hold on; axis equal; axis off; % colors red=[0.867 0.06 0.14]; blue = [0, 129, 205]/256; green = [0, 200, 70]/256; black = [0, 0, 0]; % coordinate axes shifty=0.2; arrowsize=0.1; arrow_type=1; angle=20; % in degrees arrow([A, shifty], [B, shifty], lw_thin, arrowsize, angle, arrow_type, black) % plot auxiliary lines I = find(TT >= a); m = I(1); ya = YY(m); plot([a, a], [0+shifty, ya], 'linewidth', lw_thin, 'linestyle', '--', 'color', black) I = find(TT >= tmid); m = I(1); ymid = YY(m); plot([tmid, tmid], [0+shifty, ymid], 'linewidth', lw_thin, 'linestyle', '--', 'color', black) I = find(TT >= b); m = I(1); yb = YY(m); plot([b, b], [0+shifty, yb], 'linewidth', lw_thin, 'linestyle', '--', 'color', black) % plot the solutions plot(TT, YY, 'color', blue, 'linewidth', lw); plot(-TTl, ZZ, 'color', blue, 'linewidth', lw) plot(T, Y, 'color', red, 'linewidth', lw) % plot the tangent line plot(Tant, Tany+0.003*lw, 'color', green, 'linewidth', lw) smallrad = 0.02; ball (T(1), Y(1), smallrad, red) ball (T(length(T)), Y(length(Y)), smallrad, red) % text small = 0.15; text(a, shifty-small, '\it{t_n}', 'fontsize', fs) text(tmid, shifty-small, '\it{t_n+h/2}', 'fontsize', fs) text(b, shifty-small, '\it{t_{n+1}}', 'fontsize', fs) text(T(1)-1.5*small, Y(1), '\it{y_n}', 'fontsize', fs, 'color', red) text(T(length(T))+0.6*small, Y(length(Y)), '\it{y_{n+1}}', 'fontsize', fs, 'color', red) text(-TTl(length(TTl))+0.1*small, ZZ(length(ZZ))+3*small, '\it{y(t)}', 'fontsize', fs, 'color', blue) % axes aspect ratio % pbaspect([1 1.5 1]); %% save to disk saveas(gcf, sprintf('Midpoint_method_illustration.eps', h), 'psc2'); function Y = solve_ODE (N, f, y0, h, T, method) Y = 0*T; Y(1)=y0; for i=1:(N-1) t = T(i); y = Y(i); if method == 1 % forward Euler method Y(i+1) = y + h*f(t, y); elseif method == 2 % explicit one step midpoint method K = y + 0.5*h*f(t, y); Y(i+1) = y + h*f(t+h/2, K); else disp ('Don`t know this type of method'); return; end end function arrow(start, stop, thickness, arrow_size, sharpness, arrow_type, color) % Function arguments: % start, stop: start and end coordinates of arrow, vectors of size 2 % thickness: thickness of arrow stick % arrow_size: the size of the two sides of the angle in this picture -> % sharpness: angle between the arrow stick and arrow side, in degrees % arrow_type: 1 for filled arrow, otherwise the arrow will be just two segments % color: arrow color, a vector of length three with values in [0, 1] % convert to complex numbers i=sqrt(-1); start=start(1)+i*start(2); stop=stop(1)+i*stop(2); rotate_angle=exp(i*pi*sharpness/180); % points making up the arrow tip (besides the "stop" point) point1 = stop - (arrow_size*rotate_angle)*(stop-start)/abs(stop-start); point2 = stop - (arrow_size/rotate_angle)*(stop-start)/abs(stop-start); if arrow_type==1 % filled arrow % plot the stick, but not till the end, looks bad t=0.5*arrow_size*cos(pi*sharpness/180)/abs(stop-start); stop1=t*start+(1-t)*stop; plot(real([start, stop1]), imag([start, stop1]), 'LineWidth', thickness, 'Color', color); % fill the arrow H=fill(real([stop, point1, point2]), imag([stop, point1, point2]), color); set(H, 'EdgeColor', 'none') else % two-segment arrow plot(real([start, stop]), imag([start, stop]), 'LineWidth', thickness, 'Color', color); plot(real([stop, point1]), imag([stop, point1]), 'LineWidth', thickness, 'Color', color); plot(real([stop, point2]), imag([stop, point2]), 'LineWidth', thickness, 'Color', color); end function ball(x, y, r, color) Theta=0:0.1:2*pi; X=r*cos(Theta)+x; Y=r*sin(Theta)+y; H=fill(X, Y, color); set(H, 'EdgeColor', 'none');
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Dimensions | User | Comment | |
---|---|---|---|---|
current | 04:51, 26 May 2007 | 1,863×1,667 (65 KB) | Oleg Alexandrov | ({{Information |Description=Illustration of Midpoint method |Source=self-made |Date= |Author= User:Oleg Alexandrov }} {{PD-self}} Category:Numerical analysis) |