Metric space aimed at its subspace
From Wikipedia, the free encyclopedia
Contents |
[edit] Introduction
In mathematics, a metric space aimed at its subspace is a categorical construction that has a direct geometric meaning. It is also a useful step toward the construction of the metric envelope, or tight span, which are basic (injective) objects of the category of metric spaces.
Following (Holsztyński 1966)), a notion of a metric space Y aimed at its subspace X is defined.
Informally, imagine terrain Y, and its part X, such that wherever in Y you place a sharpshooter, and an apple at another place in Y, and then let the sharpshooter fire, the bullet will go through the apple and will always hit a point of X, or at least it will fly arbitrarily close to points of X – then we say that Y is aimed at X.
A priori, it may seem plausible that for a given X the superspaces Y that aim at X can be arbitrarily large or at least huge. We will see that this is not the case. Among the spaces, which aim at a subspace isometric to X there is a unique (up to isometry) universal one, Aim(X), which in a sense of canonical isometric embeddings contains any other space aimed at (an isometric image of) X. And in the special case of an arbitrary compact metric space X every bounded subspace of an arbitrary metric space Y aimed at X is totally bounded (i.e. its metric completion is compact).
[edit] Definitions
Let (Y,d) be a metric space. Let X be a subset of Y, so that (X,d | X2) (the set X with the metric from Y restricted to X) is a metric subspace of (Y,d). Then
Definition. Space Y aims at X if and only if, for all points y,z of Y, and for every real ε > 0, there exists a point p of X such that
- | d(p,y) − d(p,z) | > d(y,z) − ε.
Let Met(X) be the space of all real valued metric maps (non-contractive) of X. Define
Then
for every is a metric on Aim(X). Furthermore, , where dx(p): = d(x,p), is an isometric embedding of X into Aim(X); this is essentially a generalisation of the Kuratowski-Wojdysławski embedding of bounded metric spaces X into C(X), where we here consider arbitrary metric spaces (bounded or unbounded). It is clear that the space Aim(X) is aimed at δX(X).
[edit] Properties
Let be an isometric embedding. Then there exists a natural metric map such that :
for every and .
- Theorem Above, space Y is aimed at subspace X if and only if the natural mapping is an isometric embedding.
Thus it follows that every space aimed at X can be isometrically mapped into Aim(X), with some additional (essential) categorical requirements satisfied.
Space Aim(X) is injective (hyperconvex in the sense of Aronszajn-Panitchpakdi) – given a metric space M, which contains Aim(X) as its metric subspace, there is a canonical (and explicit) metric retraction of M onto Aim(X) (Holsztyński 1966)