Meteorite fall statistics

From Wikipedia, the free encyclopedia

Meteorite fall statistics are frequently used by planetary scientists to approximate the true flux of meteorites on the Earth. Meteorite falls are those meteorites that are collected after being witnessed to fall, whereas meteorite finds are discovered at a later time. Although there are 30x more finds than falls, their raw distribution of types does not accurately reflect what falls to Earth. The reasons for this include: 1) some meteorite types are easier to find than others; 2) some meteorite types are degraded by weathering more quickly than others; 3) some meteorites, especially iron meteorites, may have been collected by people in the past who recognized them as being unusual and/or useful, thereby removing them from the scientific record; 4) many meteorites fall as showers of many stones, but when they are collected long after the event it may be difficult to tell which ones were part of the same fall; 5) many meteorites are found by people who sell meteorites... valuable, rare types become known to science quickly, while those of low value may never be described. There have been many attempts to correct statistical analyses of meteorite finds for some of these effects, especially to estimate the frequency with which rare meteorite types fall. For example there are 40 or so known lunar meteorite finds, but none has ever been observed to fall. However, for abundant types, meteorite fall statistics are generally preferred.

These statistics are current through May 2008.

Contents

[edit] Statistics by material

For most meteorite falls, even those that occurred long ago or for which material has never received complete scientific characterization, it is known whether the object was a stone, stony iron, or iron meteorite. Here are the numbers and percentages of each type, based on literature data[1][2][3].

Material Number %
Iron meteorites 48 4.5%
Stony-iron meteorites 11 1.0%
Stony meteorites 1009 94.5%
Total 1068 100.0%

[edit] Statistics by major category

The traditional way of subdividing meteorites (see Meteorites classification) is into irons, stony-irons, and two major groups of stony meteorites, chondrites and achondrites. For some of the less-studied stony meteorite falls, it is not known whether the object is chondritic; thus the number of meteorites that can be so grouped is 4% lower than shown above. These numbers are shown in the next table. One could make a slight correction for the undercounting of stony meteorites (e.g., the percentage of irons would decrease by a 0.2%), but this was not done.

Category Number %
Irons 48 4.7%
Stony irons 11 1.1%
Achondrites 82 8.0%
Chondrites 886 86.3%
Total 1027 100.0%

[edit] Statistics by meteorite group

Probably the most useful statistical breakdown of meteorite falls is by group, which is the fundamental way that meteorites are classified. About 5% of the meteorites in the table just above have not been sufficiently classified to allow them to be put into such groups. Again, a small adjustment could be made to the percentages to correct for this effect, but it does not greatly change the results. Note that a number of meteorite groups are only represented by a small number of falls; the percentages of falls belonging to these groups have a large uncertainty.

Group N %
Iron meteorites
IAB complex 10 1.0%
IC 0 0.0%
IIAB 6 0.6%
IIC 0 0.0%
IID 3 0.3%
IIE 1 0.1%
IIF 1 0.1%
IIG 0 0.0%
IIIAB 11 1.1%
IIIE 0 0.0%
IIIF 0 0.0%
IVA 4 0.4%
IVB 0 0.0%
Ungrouped 4 0.4%
Stony Iron meteorites
Mesosiderite 7 0.7%
Pallasite 4 0.4%
Group N %
Achondrites
Acapulcoite 1 0.1%
Lodranite 1 0.1%
Angrite 1 0.1%
Aubrite 9 0.9%
Diogenite 11 1.2%
Eucrite 32 3.3%
Howardite 16 1.7%
Brachinite 0 0.0%
Ureilite 5 0.5%
Winonaite 1 0.1%
Ungrouped 1 0.1%
Lunar 0 0.0%
Martian 4 0.4%
Group N % Class total
Chondrites
CB 1 0.1% Carbonaceous:
4.3%
CH 0 0.0%
CI 5 0.5%
CK 2 0.2%
CM 14 1.5%
CO 6 0.6%
CR 2 0.2%
CV 7 0.7%
C ungrouped 5 0.5%
EH 8 0.8% Enstatite:
1.7%
EL 8 0.8%
H 329 34.0% Ordinary:
80.1%
H/L 1 0.1%
L 357 36.9%
L/LL 9 0.9%
LL 79 8.2%
R 1 0.1% Other:
0.2%
K 1 0.1%
Grand Total: 968 meteorites

[edit] Statistics by Country

Country N
Afghanistan 1
Algeria 7
Angola 3
Argentina 22
Armenia 2
Australia 14
Austria 4
Azerbaijan 2
Bangladesh 8
Belarus 3
Belgium 3
Bosnia and Herzegovina 1
Brazil 21
Bulgaria 5
Burkina Faso 8
Burma 3
Cambodia 2
Cameroon 3
Canada 14
Central African Republic 1
Chad 1
Chile 1
China 56
Colombia 1
Congo - Dem. Rep. 5
Costa Rica 1
Croatia 4
Country N
Czech Republic 15
Denmark 3
Egypt 2
Estonia 3
Ethiopia 5
Finland 5
France 63
Germany 32
Ghana 1
Greece 1
Hungary 5
India 122
Indonesia 16
Iran 2
Iraq 2
Ireland 6
Italy 31
Japan 42
Jordan 1
Kazakhstan 6
Kenya 3
Latvia 4
Lebanon 1
Lesotho 1
Libya 1
Lithuania 4
Madagascar 1
Country N
Malawi 5
Mali 2
Mauritania 3
Mauritius 1
Mexico 18
Mongolia 4
Morocco 4
Namibia 2
Netherlands 4
New Caledonia 1
New Zealand 1
Niger 9
Nigeria 14
Norway 9
Pakistan 15
Papua New Guinea 2
Paraguay 1
Peru 1
Philippines 4
Poland 10
Portugal 6
Romania 7
Russia 47
Rwanda 1
Saudi Arabia 4
Serbia 4
Slovakia 2
Country N
Slovenia 1
Somalia 2
South Africa 21
South Korea 3
Spain 23
Sri Lanka 1
Sudan 9
Swaziland 1
Sweden 9
Switzerland 4
Syria 1
Tanzania 8
Thailand 3
Tunisia 5
Turkey 11
Turkmenistan 2
Uganda 5
Ukraine 32
United Kingdom 18
United States 139
Uzbekistan 2
Venezuela 2
Vietnam 3
Western Sahara 3
Yemen 2
Zambia 1
Zimbabwe 2
Grand Total: 1068 meteorites

[edit] Statistics by Continent and Time

Epoch Europe Asia North America Africa South America Oceania Total
Pre-1400 1 1 2
1400s 4 4
1500s 2 2
1600s 9 3 12
1700s 25 3 28
1800-1820 31 7 3 1 42
1821-1840 26 11 9 1 1 48
1841-1860 42 15 12 1 70
1861-1880 46 36 14 6 4 1 107
1881-1900 36 27 20 7 2 92
1901-1920 26 55 21 10 4 2 118
1921-1940 38 55 32 17 14 5 161
1941-1960 27 26 18 31 12 3 117
1961-1980 19 42 21 29 8 3 122
1981-2000 12 49 19 24 4 2 110
2001- 6 8 3 13 2 32
Total 350 338 172 140 49 18 1067

[edit] References