Menger curvature
From Wikipedia, the free encyclopedia
In mathematics, the Menger curvature of a triple of points in n-dimensional Euclidean space Rn is the reciprocal of the radius of the circle that passes through the three points. It is named after the Austrian-American mathematician Karl Menger.
Contents |
[edit] Definition
Let x, y and z be three points in Rn; for simplicity, assume for the moment that all three points are distinct and do not lie on a single straight line. Let Π ⊆ Rn be the Euclidean plane spanned by x, y and z and let C ⊆ Π be the unique Euclidean circle in Π that passes through x, y and z (the circumcircle of x, y and z). Let R be the radius of C. Then the Menger curvature c(x, y, z) of x, y and z is defined by
If the three points are collinear, R can be informally considered to be +∞, and it makes rigorous sense to define c(x, y, z) = 0. If any of the points x, y and z are coincident, again define c(x, y, z) = 0.
Using the well-known formula relating the side lengths of a triangle to its area, it follows that
where A denotes the area of the triangle spanned by x, y and z.
[edit] See also
[edit] External links
- Leymarie, F. (September 2003). Notes on Menger Curvature (HTML). Retrieved on 2007-11-19.
[edit] References
- Tolsa, Xavier (2000). "Principal values for the Cauchy integral and rectifiability". Proc. Amer. Math. Soc. 128: 2111–2119. doi: . ISSN 0002-9939.