MCF2L
From Wikipedia, the free encyclopedia
MCF.2 cell line derived transforming sequence-like
|
||||||||||||||
PDB rendering based on 1kz7. | ||||||||||||||
Available structures: 1kz7, 1kzg, 1lb1, 1rj2 | ||||||||||||||
Identifiers | ||||||||||||||
Symbol(s) | MCF2L; OST; ARHGEF14; DBS; FLJ12122; KIAA0362 | |||||||||||||
External IDs | OMIM: 609499 MGI: 103263 HomoloGene: 11804 | |||||||||||||
|
||||||||||||||
RNA expression pattern | ||||||||||||||
Orthologs | ||||||||||||||
Human | Mouse | |||||||||||||
Entrez | 23263 | 17207 | ||||||||||||
Ensembl | ENSG00000126217 | ENSMUSG00000031442 | ||||||||||||
Uniprot | O15068 | Q9R1D0 | ||||||||||||
Refseq | NM_024979 (mRNA) NP_079255 (protein) |
NM_178076 (mRNA) NP_835177 (protein) |
||||||||||||
Location | Chr 13: 112.6 - 112.8 Mb | Chr 8: 12.88 - 13.02 Mb | ||||||||||||
Pubmed search | [1] | [2] |
MCF.2 cell line derived transforming sequence-like, also known as MCF2L, is a human gene.[1]
[edit] References
[edit] Further reading
- Horii Y, Beeler JF, Sakaguchi K, et al. (1994). "A novel oncogene, ost, encodes a guanine nucleotide exchange factor that potentially links Rho and Rac signaling pathways.". EMBO J. 13 (20): 4776-86. PMID 7957046.
- Nagase T, Ishikawa K, Nakajima D, et al. (1997). "Prediction of the coding sequences of unidentified human genes. VII. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro.". DNA Res. 4 (2): 141-50. PMID 9205841.
- Rossman KL, Worthylake DK, Snyder JT, et al. (2002). "A crystallographic view of interactions between Dbs and Cdc42: PH domain-assisted guanine nucleotide exchange.". EMBO J. 21 (6): 1315-26. doi: . PMID 11889037.
- Snyder JT, Worthylake DK, Rossman KL, et al. (2002). "Structural basis for the selective activation of Rho GTPases by Dbl exchange factors.". Nat. Struct. Biol. 9 (6): 468-75. doi: . PMID 12006984.
- Yamauchi J, Hirasawa A, Miyamoto Y, et al. (2002). "Role of Dbl's big sister in the anti-mitogenic pathway from alpha1B-adrenergic receptor to c-Jun N-terminal kinase.". Biochem. Biophys. Res. Commun. 296 (1): 85-92. PMID 12147231.
- Wennerberg K, Ellerbroek SM, Liu RY, et al. (2003). "RhoG signals in parallel with Rac1 and Cdc42.". J. Biol. Chem. 277 (49): 47810-7. doi: . PMID 12376551.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899-903. doi: . PMID 12477932.
- Cheng L, Mahon GM, Kostenko EV, Whitehead IP (2004). "Pleckstrin homology domain-mediated activation of the rho-specific guanine nucleotide exchange factor Dbs by Rac1.". J. Biol. Chem. 279 (13): 12786-93. doi: . PMID 14701795.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs.". Nat. Genet. 36 (1): 40-5. doi: . PMID 14702039.
- Ueda S, Kataoka T, Satoh T (2005). "Role of the Sec14-like domain of Dbl family exchange factors in the regulation of Rho family GTPases in different subcellular sites.". Cell. Signal. 16 (8): 899-906. doi: . PMID 15157669.
- Kostenko EV, Mahon GM, Cheng L, Whitehead IP (2005). "The Sec14 homology domain regulates the cellular distribution and transforming activity of the Rho-specific guanine nucleotide exchange factor Dbs.". J. Biol. Chem. 280 (4): 2807-17. doi: . PMID 15531584.
- Kimura K, Wakamatsu A, Suzuki Y, et al. (2006). "Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes.". Genome Res. 16 (1): 55-65. doi: . PMID 16344560.
- Ieguchi K, Ueda S, Kataoka T, Satoh T (2007). "Role of the guanine nucleotide exchange factor Ost in negative regulation of receptor endocytosis by the small GTPase Rac1.". J. Biol. Chem. 282 (32): 23296-305. doi: . PMID 17562712.