Wikipedia:Math Sandbox

From Wikipedia, the free encyclopedia

 \int_{-\infty}^\infty e^{-x^2}\ dx = \sqrt{\pi}
 P(r, t) = \frac{1 - r^2}{1 - 2 r \cos t + r^2}
 \lim_{n\to\infty} {2\arctan nx\over\pi}
 r(s) = \frac{n(s)}{n(s)+m}\langle v \rangle_{s} + \frac{m}{n(s)+m} \langle v \rangle
 \sgn x = \lim_{n\to\infty} {2\arctan nx\over\pi}
\begin{matrix}ax^2 + bx + c &=& a\left(x^2 + \frac{bx}{a}\right) +c \\
&=& a\left(x^2 + \frac{bx}{a} + \left(\frac{b^2}{4a^2} - \frac{b^2}{4a^2}\right)\right) + c \\
&=& a\left(x^2+2\frac{bx}{2a}+\left(\frac{b}{2a}\right)^2\right)-\frac{b^2}{4a} +c \\
&=& a\left(x+\frac{b}{2a}\right)^2-\frac{b^2}{4a} + c 
\end{matrix}
6.0221415 * 10(23)


f_c(k) \simeq k


 \pi*\int_{2}^5 (2-\sqrt{y-1}^2)dy + \pi*\int_1^2((2-y)^2-1)dy

 \pi*\int_1^2((2^2)-(3-y)^2)dy + \pi*\int_2^5(3-\sqrt(y-1)^2 - 2^2)dy