Portal:Mathematics/Selected article/39
From Wikipedia, the free encyclopedia
< Previous Next >
3D illustration of a stereographic projection from the north pole onto a plane below the sphere. |
In geometry, the stereographic projection is a particular mapping (function) that projects a sphere onto a plane. The projection is defined on the entire sphere, except at one point — the projection point. Where it is defined, the mapping is smooth and bijective. It is also conformal, meaning that it preserves angles. On the other hand, it does not preserve area, especially near the projection point.
Intuitively, then, the stereographic projection is a way of picturing the sphere as the plane, with some inevitable compromises. Because the sphere and the plane appear in many areas of mathematics and its applications, so does the stereographic projection; it finds use in diverse fields including differential geometry, complex analysis, cartography, geology, and crystallography.
...Archive | Image credit: Mark Howison | Read more... |