Matrix normal distribution

From Wikipedia, the free encyclopedia

The matrix normal distribution is a probability distribution that is a generalization of the normal distribution. The probability density function for the random matrix X (n × p) that follows the matrix normal distribution has the form


p(\mathbf{X}|\mathbf{M}, {\boldsymbol \Omega}, {\boldsymbol \Sigma})
=(2\pi)^{-np/2} |{\boldsymbol \Omega}|^{-n/2}  |{\boldsymbol  \Sigma}|^{-p/2}
\exp\left(    -\frac{1}{2}    \mbox{tr}\left[      {\boldsymbol  \Omega}^{-1}      (\mathbf{X} - \mathbf{M})^{T}      {\boldsymbol  \Sigma}^{-1}      (\mathbf{X} - \mathbf{M})    \right]  \right).

where M is n × p, Ω is p × p and Σ is n × n. There are several ways to define the two covariance matrices. One possibility is


    {\boldsymbol  \Sigma} = E[  (\mathbf{X} - \mathbf{M})(\mathbf{X} - \mathbf{M})^{T}]\;,\;\;\;\;
    {\boldsymbol  \Omega} = E[  (\mathbf{X} - \mathbf{M})^{T} (\mathbf{X} - \mathbf{M})]/c,

where c is a constant which depends on Σ and ensures appropriate power normalization.

The matrix normal is related to the multivariate normal distribution in the following way:

\mathbf{X} \sim MN_{n\times p}(\mathbf{M}, {\boldsymbol \Omega}, {\boldsymbol \Sigma})

if and only if


    \mathrm{vec}\;\mathbf{X} \sim N_{np}(\mathrm{vec}\;\mathbf{M}, 
    {\boldsymbol \Omega}\otimes{\boldsymbol \Sigma}),

where \otimes denotes the Kronecker product and \mathrm{vec}\;\mathbf{M} denotes the vectorization of \mathbf{M}.

[edit] See also

Languages