Matrix determinant lemma

From Wikipedia, the free encyclopedia

In mathematics, in particular linear algebra, the matrix determinant lemma[1][2] computes the determinant of the sum of an invertible matrix A and the dyadic product, u vT, of a column vector u and a row vector vT.

Contents

[edit] Statement

Suppose A is an invertible square matrix and u, v are column vectors. Then the matrix determinant lemma states that

\det(\mathbf{A}+\mathbf{uv}^\mathrm{T}) = (1 + \mathbf{v}^\mathrm{T}\mathbf{A}^{-1}\mathbf{u})\,\det(\mathbf{A}).

Here, uvT is the dyadic product of two vectors u and v.

[edit] Application

If the determinant and inverse of A are already known, the formula provides a numerically cheap way to compute the determinant of A corrected by the matrix uvT. The computation is relatively cheap because the determinant of A+uvT does not have to be computed from scratch (which in general is expensive). Using unit vectors for u and/or v, individual columns, rows or elements[3] of A may be manipulated and a correspondingly updated determinant computed relatively cheaply in this way.

When the matrix determinant lemma is used in conjunction with the Sherman-Morrison formula, both the inverse and determinant may be conveniently updated together.

[edit] Generalization

Suppose A is an invertible n-by-n matrix and U, V are n-by-m matrices. Then

\operatorname{det}(\mathbf{A}+\mathbf{UV}^\mathrm{T}) = \operatorname{det}(\mathbf{I} + \mathbf{V}^\mathrm{T}\mathbf{A}^{-1}\mathbf{U})\operatorname{det}(\mathbf{A}).

In the special case \mathbf{A}=\mathbf{I} this is Sylvester's theorem for determinants.

Given additionally an invertible m-by-m matrix W, the relationship can also be expressed as

\operatorname{det}(\mathbf{A}+\mathbf{UWV}^\mathrm{T}) = \det(\mathbf{W}^{-1} + \mathbf{V}^\mathrm{T}\mathbf{A}^{-1}\mathbf{U})\det(\mathbf{W})\det(\mathbf{A}).

[edit] See also

[edit] References

  1. ^ Harville, D. A. (1997). Matrix Algebra From a Statistician’s Perspective. Springer-Verlag. 
  2. ^ Brookes, M. (2005). The Matrix Reference Manual [online].
  3. ^ (1992) Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, p.73. ISBN 0-521-43108-5.