Maths24

From Wikipedia, the free encyclopedia

A typical, basic Maths24 card. The two red dots in the corners refer to a second-degree level of difficulty. The number 9 is filled with red to differentiate it from a 6.
A typical, basic Maths24 card. The two red dots in the corners refer to a second-degree level of difficulty. The number 9 is filled with red to differentiate it from a 6.

Maths24 is a competitive, arithmetical card game aimed predominantly at primary and high school pupils. Although it can be played informally, the game was organised and operated within Southern Africa in a series of interschool, geographically increasing tournaments. The game experienced its peak during the 1990s, and is now no longer produced or played in any official manner.

Contents

[edit] History

The Maths24 game was devised, sponsored and officiated by the Old Mutual insurance company. It first began appearing in schools in 1989, and was even sold commercially to the public for a short period in the early 1990s.

Old Mutual devised the game and competitions chiefly as a promotional activity to publicise the company. The project aimed to introduce pupils and encourage their participation in mathematics via entertaining activities.

Interest in Maths24 began to taper off towards the end of the 1990s. Although official sponsorship and promotion of the game stopped, many schools and individuals continue to play the game informally.

Due to its unconventional release and propagation, the game went through a variety of rules, playing-styles and even names, being known for some time as The I-Got-It Game.

[edit] Card Description

The cards are double-sided, thin cardboard squares with sides measuring approximately 10 cm. The conventional cards bare the Old Mutual logo in the centres of each side, however with the green and white inverted on one side to differentiate. Later variations of the cards bore red, blue and black logos.

The conventional card displays four numbers, each a single digit from 1 to 9. Numbers may repeat. The cards are designed to be viewed from any angle.

The card difficulty is ranked by displaying one, two or three dots in each corner of the card in white, red and yellow respectively, as the difficulty increases.

[edit] Rules

Although official rules were later published, the game evolved with common basic rules, and many smaller variations.

Any number of competitors (usually four at most) sit around a table. The cards are placed, one at a time, in the centre of the table. The first person to cover the card with their hand and claim to have the solution would then be given the first opportunity to give their answer.

Cards are solved by using the numbers, applying only the addition, subtraction, multiplication and division operations to achieve a final mathematical solution of 24.

All four numbers must be included. The numbers can only be used once. No other mathematical operations are allowed. There may be more than one way to solve each card.

[edit] Tournament Play

The Maths24 game was intended and mostly played in tournament scenarios, ranging from school to international levels.

Competitors are initially distributed into tables of four, each with their own adjudicator. The game is played in rounds, with participants competing for points. Points are earned by solving cards, with one, two or three points assigned to cards of increasing difficulty. After claiming a solution to a card, if a participant failed to give a correct or legal solution their points would be deducted according to the difficulty. Rounds continue for a predefined length of time, at the end of which the points are tallied and the winners proceed.

Participants claim a card by covering it with their hand after it has been placed onto the table, and audibly declaring "I've got it". Later, due to minor injuries, the rules enforced covering only the centre of the card with only the index and middle fingers.

At the top competition levels, there would typically be almost no delay between a card's placement and a participant's claiming it. This is due to the fact that there are only a finite number of cards that can be made, and participant's ability to give a solution from memory. Also, participants could exploit the small delay, instead, between claiming a card and giving its solution, to work out the solution then.

[edit] Variations

Because of the finite extent of the basic cards, many variations and adaptations of the game were introduced to add complexity to tournaments.

[edit] 25, 36 & 48

Using the regular cards, the target total could be changed for a round, from the usual 24, to 25, 36 or 48.

[edit] Time Trial

Instead of many participants competing to solve communal cards for a set time, each participant could be presented with an entire pack of cards. The times taken to work through the pack, solving all cards would be could be recorded and compared.

[edit] The Sleeve

A cardboard sleeve that could hold two cards side-by-side could be used in the game. The sleeve allows three numbers from each card to be visible, while concealing the forth number from each. Participants would be required to solve a sleeve by identifying a number that could be common to both cards, as well as giving both card solutions.

[edit] Fractions

New cards were later introduced to the games. The first card adaptation was the introduction of natural fractions.

[edit] Variables

A Maths24 card with the inclusion of variables, being used in an algebraic expression, in fractional form and with powers.
A Maths24 card with the inclusion of variables, being used in an algebraic expression, in fractional form and with powers.

Finally, cards were printed with x and y variables that could appear in many forms, including fractions, powers and algebraic expressions. Participants would be required to find natural numbers (from 1 to 9) that the variables could represent, as well as the solution.

This type of card effectively removes the previous limitations to the cards.

[edit] Combinations

One[1] of the officially recognized, international top-twenty Maths24 participants has shown that although the total possible number of four repeatable single-digit combinations, where order does not matter is 495, there are only 402 legally solvable possible combinations.

All 402 possible cards, in ascending order, with one possible solution are given below:

Number Combination Solution
1. 1118 ((1+1)+1)x8
2. 1126 ((1+1)+2)x6
3. 1127 (1+2)x(1+7)
4. 1128 ((1+2)x1)x8
5. 1129 (1+2)x(9-1)
6. 1134 ((1+1)x3)x4
7. 1135 (1+3)x(1+5)
8. 1136 ((1+1)+6)x3
9. 1137 ((1+7)x1)x3
10. 1138 ((1+3)-1)x8
11. 1139 ((1x9)-1)x3
12. 1144 ((1+1)+4)x4
13. 1145 ((1+4)x5)-1
14. 1146 ((1+4)-1)x6
15. 1147 ((1x7)-1)x4
16. 1148 ((1x4)-1)x8
17. 1149 (1-4)x(1-9)
18. 1155 ((1x5)x5)-1
19. 1156 ((1x5)-1)x6
20. 1157 (1+1)x(5+7)
21. 1158 ((5-1)-1)x8
22. 1166 ((6-1)-1)x6
23. 1168 (6x8)÷(1+1)
24. 1169 ((1+1)x9)+6
25. 1188 ((1+1)x8)+8
26. 1224 ((1+2)x2)x4
27. 1225 ((1+5)x2)x2
28. 1226 ((1x2)+2)x6
29. 1227 ((7-1)x2)x2
30. 1228 ((2+2)-1)x8
31. 1229 ((1+2)+9)x2
32. 1233 ((1+3)x2)x3
33. 1234 ((1+2)+3)x4
34. 1235 ((1+2)+5)x3
35. 1236 ((1x2)+6)x3
36. 1237 ((1+2)x7)+3
37. 1238 ((1+3)+8)x2
38. 1239 ((1+2)x9)-3
39. 1244 ((1x2)+4)x4
40. 1245 ((2+5)-1)x4
41. 1246 ((2-1)x4)x6
42. 1247 ((1+4)+7)x2
43. 1248 ((1+4)-2)x8
44. 1249 ((1+9)x2)+4
45. 1255 ((5x5)+1)-2
46. 1256 ((1+5)+6)x2
47. 1257 ((1x5)+7)x2
48. 1258 ((1+5)x8)÷2
49. 1259 ((1+2)x5)+9
50. 1266 ((1+2)x6)+6
51. 1267 ((1+7)x6)÷2
52. 1268 ((1+8)x2)+6
53. 1269 ((1x2)x9)+6
54. 1277 ((7x7)-1)÷2
55. 1278 ((1+7)x2)+8
56. 1279 ((2x7)+1)+9
57. 1288 ((1x2)x8)+8
58. 1289 ((2x8)+9)-1
59. 1333 ((3x3)-1)x3
60. 1334 ((1+3)+4)x3
61. 1335 ((1x3)+5)x3
62. 1336 ((1+6)x3)+3
63. 1337 ((1x3)x7)+3
64. 1338 ((1+8)x3)-3
65. 1339 ((1x3)x9)-3
66. 1344 ((1x4)+4)x3
67. 1345 ((1+3)x5)+4
68. 1346 6÷(1-(3÷4))
69. 1347 ((1+3)x7)-4
70. 1348 ((1+3)x4)+8
71. 1349 ((1+4)x3)+9
72. 1356 ((1+5)x3)+6
73. 1357 (1+5)x(7-3)
74. 1358 ((1+5)-3)x8
75. 1359 ((1x3)x5)+9
76. 1366 ((1+6)-3)x6
77. 1367 ((1x7)-3)x6
78. 1368 ((1x6)-3)x8
79. 1369 ((1+9)x3)-6
80. 1377 (1-7)x(3-7)
81. 1378 ((7-1)-3)x8
82. 1379 ((1+7)x9)÷3
83. 1388 ((1+3)x8)-8
84. 1389 ((1x8)x9)÷3
85. 1399 ((9-1)x9)÷3
86. 1444 ((1+4)x4)+4
87. 1445 ((1x4)x5)+4
88. 1446 ((1+6)x4)-4
89. 1447 ((1x4)x7)-4
90. 1448 ((1x4)x4)+8
91. 1449 ((1+9)-4)x4
92. 1455 ((4x5)+5)-1
93. 1456 6÷((5÷4)-1)
94. 1457 ((4x7)+1)-5
95. 1458 ((5-1)x4)+8
96. 1459 ((4-1)x5)+9
97. 1466 ((1+4)x6)-6
98. 1467 ((1+7)-4)x6
99. 1468 ((1+6)-4)x8
100. 1469 ((9-1)-4)x6
101. 1477 (1+7)x(7-4)
102. 1478 ((1+7)x4)-8
103. 1479 (1-9)x(4-7)
104. 1488 ((1x4)x8)-8
105. 1489 ((4x8)+1)-9
106. 1556 ((1+5)x5)-6
107. 1559 (1+5)x(9-5)
108. 1566 ((1x5)x6)-6
109. 1567 ((5x6)+1)-7
110. 1568 ((1+8)-5)x6
111. 1569 ((1x9)-5)x6
112. 1578 ((1+7)-5)x8
113. 1579 (1-7)x(5-9)
114. 1588 ((1x8)-5)x8
115. 1589 ((9-1)-5)x8
116. 1599 ((1+5)+9)+9
117. 1666 ((6-1)x6)-6
118. 1668 6÷(1-(6÷8))
119. 1669 ((1+9)-6)x6
120. 1679 (1+7)x(9-6)
121. 1688 ((1+8)-6)x8
122. 1689 ((1+6)+8)+9
123. 1699 ((1x6)+9)+9
124. 1779 ((1+7)+7)+9
125. 1788 ((1+7)+8)+8
126. 1789 ((1+9)-7)x8
127. 1799 ((7+9)+9)-1
128. 1888 ((1x8)+8)+8
129. 1889 ((8+8)+9)-1
130. 2223 ((2+2)x2)x3
131. 2224 ((2+2)+2)x4
132. 2225 ((2x5)+2)x2
133. 2227 ((2x7)-2)x2
134. 2228 ((2+2)+8)x2
135. 2229 ((2+9)x2)+2
136. 2233 ((2x3)+2)x3
137. 2234 ((2+2)+4)x3
138. 2235 ((2x5)-2)x3
139. 2236 ((2x3)+6)x2
140. 2237 ((2+3)+7)x2
141. 2238 ((2+3)-2)x8
142. 2239 ((2÷3)+2)x9
143. 2244 ((2x4)+4)x2
144. 2245 ((2+2)x5)+4
145. 2246 ((2+4)+6)x2
146. 2247 ((2+2)x7)-4
147. 2248 ((2+2)x4)+8
148. 2249 ((2x9)+2)+4
149. 2255 ((2+5)+5)x2
150. 2256 ((5+6)x2)+2
151. 2257 (2x5)+(2x7)
152. 2258 ((5+8)x2)-2
153. 2259 ((5+9)-2)x2
154. 2266 ((2+6)x6)÷2
155. 2267 ((2+7)x2)+6
156. 2268 ((2+6)x2)+8
157. 2269 ((2x9)-6)x2
158. 2277 ((7+7)-2)x2
159. 2278 ((2x7)+2)+8
160. 2288 ((2+2)x8)-8
161. 2289 ((2x9)+8)-2
162. 2333 ((2+3)+3)x3
163. 2335 ((2+5)x3)+3
164. 2336 ((2x3)x3)+6
165. 2337 ((2+7)x3)-3
166. 2338 ((2x3)-3)x8
167. 2339 ((2+3)x3)+9
168. 2344 ((2+3)x4)+4
169. 2345 ((3+4)+5)x2
170. 2346 ((2+4)x3)+6
171. 2347 ((2+7)-3)x4
172. 2348 ((2+4)-3)x8
173. 2349 ((2x4)x9)÷3
174. 2355 ((5+5)-2)x3
175. 2356 ((2+5)-3)x6
176. 2357 ((3x5)+2)+7
177. 2358 ((2x8)+3)+5
178. 2359 ((3x9)+2)-5
179. 2366 ((2+3)x6)-6
180. 2367 ((2x7)-6)x3
181. 2368 ((2+8)x3)-6
182. 2369 ((2+6)x9)÷3
183. 2377 ((2x7)+3)+7
184. 2378 ((2+7)x8)÷3
185. 2379 ((3x7)-9)x2
186. 2388 ((2x8)-8)x3
187. 2389 ((9-3)x8)÷2
188. 2399 ((2+9)x3)-9
189. 2444 ((4+4)+4)x2
190. 2445 ((2+5)x4)-4
191. 2446 ((2x4)-4)x6
192. 2447 ((7-2)x4)+4
193. 2448 ((2+8)-4)x4
194. 2449 ((9-2)x4)-4
195. 2455 ((5+5)x2)+4
196. 2456 ((2+4)x5)-6
197. 2457 ((5+7)x4)÷2
198. 2458 ((2+5)-4)x8
199. 2459 ((2+9)-5)x4
200. 2466 ((2+6)-4)x6
201. 2467 ((2x7)+4)+6
202. 2468 ((2+6)x4)-8
203. 2469 ((4-2)x9)+6
204. 2477 ((7+7)x2)-4
205. 2478 ((2x7)-8)x4
206. 2479 ((2x4)+7)+9
207. 2488 ((2x4)+8)+8
208. 2489 ((9-2)-4)x8
209. 2499 ((2+4)+9)+9
210. 2557 ((2x7)+5)+5
211. 2558 ((5÷5)+2)x8
212. 2559 ((2x5)+5)+9
213. 2566 ((2x5)-6)x6
214. 2567 ((2+7)-5)x6
215. 2568 ((2+6)-5)x8
216. 2569 ((5x6)÷2)+9
217. 2577 ((2x5)+7)+7
218. 2578 ((2x5)-7)x8
219. 2579 ((5x7)-2)-9
220. 2588 ((5x8)+8)÷2
221. 2589 ((2+5)+8)+9
222. 2666 ((2x6)+6)+6
223. 2667 ((6x7)+6)÷2
224. 2668 ((2+8)-6)x6
225. 2669 ((6+9)x2)-6
226. 2678 ((2+7)-6)x8
227. 2679 ((2+6)+7)+9
228. 2688 ((2+6)+8)+8
229. 2689 ((2x6)-9)x8
230. 2699 ((6÷9)+2)x9
231. 2778 ((2+7)+7)+8
232. 2788 ((2+8)-7)x8
233. 2789 ((7+9)x2)-8
234. 2888 ((8+8)x2)-8
235. 2889 ((2+9)-8)x8
236. 2899 ((8+9)+9)-2
237. 3333 ((3x3)x3)-3
238. 3334 ((3+4)x3)+3
239. 3335 (3x3)+(3x5)
240. 3336 ((3+3)x3)+6
241. 3337 ((3÷3)+7)x3
242. 3338 ((3+3)-3)x8
243. 3339 (9-(3÷3))x3
244. 3344 ((3x4)-4)x3
245. 3345 ((3÷3)+5)x4
246. 3346 ((3+4)-3)x6
247. 3347 ((4+7)-3)x3
248. 3348 ((4-3)x3)x8
249. 3349 ((3+9)-4)x3
250. 3355 (5x5)-(3÷3)
251. 3356 ((3+3)x5)-6
252. 3357 ((3x5)-7)x3
253. 3359 ((3+5)x9)÷3
254. 3366 ((6÷3)+6)x3
255. 3367 ((3+7)x3)-6
256. 3368 ((3+6)x8)÷3
257. 3369 ((3+9)x6)÷3
258. 3377 ((3÷7)+3)x7
259. 3378 ((3x3)+7)+8
260. 3379 ((7x9)÷3)+3
261. 3389 ((3+8)x3)-9
262. 3399 ((3+3)+9)+9
263. 3444 ((3+4)x4)-4
264. 3445 ((4+5)-3)x4
265. 3446 ((3x4)-6)x4
266. 3447 ((3+7)-4)x4
267. 3448 ((3+4)-4)x8
268. 3449 ((4+4)x9)÷3
269. 3455 ((3x5)+4)+5
270. 3456 ((3+5)-4)x6
271. 3457 ((3x4)+5)+7
272. 3458 ((3+5)x4)-8
273. 3459 ((3x5)-9)x4
274. 3466 ((3x4)+6)+6
275. 3468 ((3x4)-8)x6
276. 3469 ((3+9)-6)x4
277. 3477 ((3x7)+7)-4
278. 3478 ((7-3)x4)+8
279. 3479 ((3x9)+4)-7
280. 3489 ((3+4)+8)+9
281. 3499 ((4x9)-3)-9
282. 3556 ((5+5)x3)-6
283. 3557 ((5÷5)+7)x3
284. 3558 ((3+5)-5)x8
285. 3559 (9-(5÷5))x3
286. 3566 ((3+6)-5)x6
287. 3567 ((5+7)x6)÷3
288. 3568 ((6-5)x3)x8
289. 3569 ((5+6)x3)-9
290. 3578 ((3x7)+8)-5
291. 3579 ((3+5)+7)+9
292. 3588 ((3+5)+8)+8
293. 3589 ((3x9)+5)-8
294. 3599 ((5x9)÷3)+9
295. 3666 ((6+6)x6)÷3
296. 3667 ((3+7)-6)x6
297. 3668 ((3+6)-6)x8
298. 3669 ((3+6)+6)+9
299. 3677 ((7+7)-6)x3
300. 3678 ((3+6)+7)+8
301. 3679 ((3x7)+9)-6
302. 3688 ((6x8)÷3)+8
303. 3689 ((3+9)-8)x6
304. 3699 ((3x9)+6)-9
305. 3777 ((3+7)+7)+7
306. 3778 ((3+7)-7)x8
307. 3779 (9-(7÷7))x3
308. 3788 ((7-3)x8)-8
309. 3789 ((7+9)-8)x3
310. 3799 ((7x9)+9)÷3
311. 3888 ((3+8)-8)x8
312. 3889 ((9-8)x3)x8
313. 3899 ((3+9)-9)x8
314. 3999 ((9+9)+9)-3
315. 4444 ((4x4)+4)+4
316. 4445 ((4÷4)+5)x4
317. 4446 ((4+4)-4)x6
318. 4447 (4+4)x(7-4)
319. 4448 ((4+4)x4)-8
320. 4449 ((9-4)x4)+4
321. 4455 ((5+5)-4)x4
322. 4456 ((5-4)x4)x6
323. 4457 ((4+7)-5)x4
324. 4458 ((4+4)-5)x8
325. 4468 ((4+8)-6)x4
326. 4469 ((4x4)x9)÷6
327. 4477 (4-(4÷7))x7
328. 4478 ((4x7)+4)-8
329. 4479 ((4+4)+7)+9
330. 4488 ((4+4)+8)+8
331. 4489 ((4x9)-4)-8
332. 4555 ((5x5)+4)-5
333. 4556 ((4+5)-5)x6
334. 4557 (7-(5÷5))x4
335. 4558 (4-(5÷5))x8
336. 4559 ((4x5)+9)-5
337. 4566 ((6-5)x4)x6
338. 4567 ((5+7)-6)x4
339. 4568 ((4+5)-6)x8
340. 4569 ((4+5)+6)+9
341. 4577 ((5x7)-4)-7
342. 4578 ((4+5)+7)+8
343. 4579 ((4x7)+5)-9
344. 4588 ((8÷8)+5)x4
345. 4589 ((5+9)-8)x4
346. 4599 ((9÷9)+5)x4
347. 4666 ((4+6)-6)x6
348. 4667 ((7-4)x6)+6
349. 4668 ((4+6)+6)+8
350. 4669 ((4x9)-6)-6
351. 4677 ((4+6)+7)+7
352. 4678 ((4+6)-7)x8
353. 4679 ((7+9)x6)÷4
354. 4688 ((4+8)-8)x6
355. 4689 ((8x9)÷4)+6
356. 4699 ((4+9)-9)x6
357. 4777 (7-(7÷7))x4
358. 4778 ((7+7)-8)x4
359. 4788 ((4+7)-8)x8
360. 4789 ((7+8)-9)x4
361. 4799 (7-(9÷9))x4
362. 4888 ((8-4)x8)-8
363. 4889 ((4+8)-9)x8
364. 4899 (4-(9÷9))x8
365. 5555 (5x5)-(5÷5)
366. 5556 ((5x5)+5)-6
367. 5559 ((5+5)+5)+9
368. 5566 ((5+5)-6)x6
369. 5567 ((5x5)+6)-7
370. 5568 ((5+5)+6)+8
371. 5577 ((5+5)+7)+7
372. 5578 ((5+5)-7)x8
373. 5588 (5x5)-(8÷8)
374. 5589 ((5x5)+8)-9
375. 5599 (5x5)-(9÷9)
376. 5666 (5-(6÷6))x6
377. 5667 ((5+6)+6)+7
378. 5668 ((8-5)x6)+6
379. 5669 (6x9)-(5x6)
380. 5677 (5-(7÷7))x6
381. 5678 ((5+7)-8)x6
382. 5679 ((7-5)x9)+6
383. 5688 ((5+6)-8)x8
384. 5689 ((5+8)-9)x6
385. 5699 ((9-6)x5)+9
386. 5779 (5+7)x(9-7)
387. 5788 ((7+8)x8)÷5
388. 5789 ((5+7)-9)x8
389. 5888 ((5x8)-8)-8
390. 5889 ((9-5)x8)-8
391. 6666 ((6+6)+6)+6
392. 6668 ((6+6)-8)x6
393. 6669 ((6x6)x6)÷9
394. 6679 ((6+7)-9)x6
395. 6688 (6x8)÷(8-6)
396. 6689 ((6+6)-9)x8
397. 6789 (6x8)÷(9-7)
398. 6799 ((6x7)-9)-9
399. 6888 ((8-6)x8)+8
400. 6889 ((8+8)x9)÷6
401. 6899 ((9+9)x8)÷6
402. 7889 ((9-7)x8)+8

[edit] See also

[edit] References

  1. ^ http://en.wikipedia.org/wiki/Mitchell_Brom