Lutetium

From Wikipedia, the free encyclopedia

71 ytterbiumlutetiumhafnium
Y

Lu

Lr
General
Name, Symbol, Number lutetium, Lu, 71
Chemical series transition metals
Group, Period, Block n/a, 6, d
Appearance silvery white
Standard atomic weight 174.967(1)  g·mol−1
Electron configuration Xe 6s2 4f14 5d1
Electrons per shell 2, 8, 18, 32, 9, 2
Physical properties
Phase solid
Density (near r.t.) 9.841  g·cm−3
Liquid density at m.p. 9.3  g·cm−3
Melting point 1925 K
(1652 °C, 3006 °F)
Boiling point 3675 K
(3402 °C, 6156 °F)
Heat of fusion ca. 22  kJ·mol−1
Heat of vaporization 414  kJ·mol−1
Specific heat capacity (25 °C) 26.86  J·mol−1·K−1
Vapor pressure
P(Pa) 1 10 100 1 k 10 k 100 k
at T(K) 1906 2103 2346 (2653) (3072) (3663)
Atomic properties
Crystal structure hexagonal
Oxidation states 3
(weakly basic oxide)
Electronegativity 1.27 (Pauling scale)
Ionization energies
(more)
1st:  523.5  kJ·mol−1
2nd:  1340  kJ·mol−1
3rd:  2022.3  kJ·mol−1
Atomic radius 175pm
Atomic radius (calc.) 217  pm
Covalent radius 160  pm
Miscellaneous
Magnetic ordering no data
Electrical resistivity (r.t.) (poly) 582 nΩ·m
Thermal conductivity (300 K) 16.4  W·m−1·K−1
Thermal expansion (r.t.) (poly) 9.9 µm/(m·K)
Young's modulus 68.6  GPa
Shear modulus 27.2  GPa
Bulk modulus 47.6  GPa
Poisson ratio 0.261
Vickers hardness 1160  MPa
Brinell hardness 893  MPa
CAS registry number 7439-94-3
Selected isotopes
Main article: Isotopes of lutetium
iso NA half-life DM DE (MeV) DP
173Lu syn 1.37 y ε 0.671 173Yb
174Lu syn 3.31 y ε 1.374 174Yb
175Lu 97.41% 175Lu is stable with 104 neutrons
176Lu 2.59% 3.78×1010y β- 1.193 176Hf
References

Lutetium (pronounced /ljuːˈtiːʃiəm/) is a chemical element with the symbol Lu and atomic number 71. A silvery-white rare metal, lutetium is the heaviest member of the rare-earth group.[1] Its radioactive isotope is used in nuclear technology to determine the age of meteorites.[2] lutetium usually occurs in association with yttrium and is sometimes used in metal alloys and as a catalyst in various processes. A strict correlation between periodic table blocks and chemical series for neutral atoms would describe lutetium as a transition metal because it is in the d-block, but it is a lanthanide according to IUPAC.[3]

Contents

[edit] Notable characteristics and applications

Lutetium is a silvery white corrosion-resistant trivalent metal that is relatively stable in air. Lutetium is the heaviest and hardest of the rare earth elements. Lutetium has the highest melting point of any lanthanide, probably related to the lanthanide contraction.

This element is very expensive to obtain in useful quantities and therefore it has very few commercial uses. However, stable lutetium can be used as catalysts in petroleum cracking in refineries and can also be used in alkylation, hydrogenation, and polymerization applications.

Lutetium-176 (176Lu) has been used to date the age of meteorites.

Lutetium aluminium garnet (Al5Lu3O12) has been proposed for use as a lens material in high refractive index immersion lithography.

Lutetium-177 (177Lu), when bound to Octreotate (a somatostatin analogue), is used experimentally in targeted radionuclide therapy for neuroendocrine tumours.

Cerium-doped lutetium oxyorthosilicate (LSO) is currently the preferred compound for detectors in positron emission tomography (PET.) [4]

[edit] History

Lutetium (Latin Lutetia meaning Paris) was independently discovered in 1907 by French scientist Georges Urbain, Austrian mineralogist Baron Carl Auer von Welsbach and American chemist Charles James. [5] All of these men found lutetium as an impurity in the mineral ytterbia which was thought by Swiss chemist Jean Charles Galissard de Marignac (and most others) to consist entirely of the element ytterbium.

The separation of lutetium from Marignac's ytterbium was first described by Urbain and the naming honor therefore went to him. He chose the names neoytterbium (new ytterbium) and lutecium for the new element but neoytterbium was eventually reverted back to ytterbium and in 1949 the spelling of element 71 was changed to lutetium.

Welsbach proposed the names cassiopium for element 71 (after the constellation Cassiopeia) and aldebaranium for the new name of ytterbium but these naming proposals where rejected (although many German scientists in the 1950s called the element 71 cassiopium).

[edit] Occurrence

Found with almost all other rare-earth metals but never by itself, lutetium is very difficult to separate from other elements. Consequently, it is also one of the most expensive metals, costing about six times as much as gold.

The principal commercially viable ore of lutetium is the rare earth phosphate mineral monazite: (Ce, La, etc.) PO4 which contains 0.003% of the element. Pure lutetium metal has only relatively recently been isolated and is very difficult to prepare (thus it is one of the most rare and expensive of the rare earth metals). It is separated from other rare earth elements by ion exchange and then obtained in the elemental form by reduction of anhydrous LuCl3 or LuF3 by either an alkali metal or alkaline earth metal.

[edit] Isotopes

Main article: isotopes of lutetium

Naturally occurring lutetium is composed of 1 stable isotope 175Lu (97.41% natural abundance) and 1 long-lived beta-radioactive isotope 176Lu with a half-life of 3.78×1010 years (2.59% natural abundance). The last one is used in the radiometric dating (see Lutetium-hafnium dating). 33 radioisotopes have been characterized, with the most stable being naturally occurring 176Lu, and artificial isotopes 174Lu with a half-life of 3.31 years, and 173Lu with a half-life of 1.37 years. All of the remaining radioactive isotopes have half-lives that are less than 9 days, and the majority of these have half-lives that are less than a half an hour. This element also has 18 meta states, with the most stable being 177mLu (T½=160.4 days), 174mLu (T½=142 days) and 178mLu (T½=23.1 minutes).

The known isotopes of lutetium range in atomic weight from 149.973 (150Lu) to 183.961 (184Lu). The primary decay mode before the most abundant stable isotope, 175Lu, is electron capture (with some alpha and positron emission), and the primary mode after is beta emission. The primary decay products before 175Lu are element 70 (ytterbium) isotopes and the primary products after are element 72 (hafnium) isotopes.

[edit] Applications

Lutetium is very expensive (upwards of $100 per gram) to obtain on useful quantities and therefore it has very few commercial uses. Some commercial applications include:

[edit] Compounds

Fluoride: LuF3, Chloride: LuCl3, Bromide: LuBr3, Iodide: LuI3, Oxide: Lu2O3, Sulfide: Lu2S3, Nitride: LuN

Intermetalic compounds:

See also lutetium compounds.

[edit] Precautions

Like other rare-earth metals lutetium is regarded as having a low degree of toxicity but it and especially its compounds should be handled with care nonetheless. Metal dust of this element is a fire and explosion hazard. Lutetium plays no biological role in the human body but is thought to help stimulate metabolism.

[edit] References

  1. ^ Parker, Sybil P., ed. Dictionary of Scientific and Technical Terms. 3rd ed. New York: McGraw-Hill, 1984.
  2. ^ American Heritage. The American Heritage Science Dictionary. Boston: Houghton Mifflin, 2005.
  3. ^ IUPAC Provisional Recommendations for the Nomenclature of Inorganic Chemistry (2004) (online draft of an updated version of the "Red Book" IR 3-6)
  4. ^ Thompson CJ. Instrumentation. In: Wahl RL,ed. Principles and Practice of Positron Emission Tomography. Philadelphia: Lippincott Williams and Wilkins, 2002:51.
  5. ^ Separation of Rare Earth Elements

[edit] External links

Wikimedia Commons has media related to:
Look up lutetium in
Wiktionary, the free dictionary.