Lucas sequence

From Wikipedia, the free encyclopedia

In mathematics, a Lucas sequence is a particular generalisation of the Fibonacci numbers and Lucas numbers. Lucas sequences are named after French mathematician Edouard Lucas.

Contents

[edit] Recurrence relations

Given two integer parameters P and Q which satisfy

P^2 - 4Q \neq 0

the Lucas sequences U(P,Q) and V(P,Q) are defined by the recurrence relations

U_0(P,Q)=0 \,
U_1(P,Q)=1 \,
U_n(P,Q)=PU_{n-1}(P,Q)-QU_{n-2}(P,Q) \mbox{  for }n>1 \,

and

V_0(P,Q)=2 \,
V_1(P,Q)=P \,
V_n(P,Q)=PV_{n-1}(P,Q)-QV_{n-2}(P,Q) \mbox{  for }n>1 \,

[edit] Algebraic relations

If the roots of the characteristic equation

x^2 - Px + Q=0 \,

are a and b with a > b or (a - b)/i > 0, then U(P,Q) and V(P,Q) can also be defined in terms of a and b by

U_n(P,Q)= \frac{a^n-b^n}{a-b} = \frac{a^n-b^n}{ \sqrt{P^2-4Q}}
V_n(P,Q)=a^n+b^n \,

from which we can derive the relations

a^n = \frac{V_n + U_n \sqrt{P^2-4Q}}{2}
b^n = \frac{V_n - U_n \sqrt{P^2-4Q}}{2}

(where the square root means its principal value).

Note that a and b are distinct because P2 − 4Q is not 0.

[edit] Other relations

The numbers in Lucas sequences satisfy relations that are generalisations of the relations between Fibonacci numbers and Lucas numbers. For example:

General P=1, Q=-1
U_n = \frac{V_{n+1} - Q V_{n-1}}{P^2-4Q} U_n = \frac{V_{n+1} + V_{n-1}}{5}
Vn = Un + 1QUn − 1 Vn = Un + 1 + Un − 1
U2n = UnVn U2n = UnVn
V_{2n} = V_n^2 - 2Q^n V_{2n} = V_n^2 - 2(-1)^n
Un + m = UnUm + 1QUmUn − 1 Un + m = UnUm + 1 + UmUn − 1
V_{n+m} = V_n V_m - Q^m V_{n-m} \, V_{n+m} = V_n V_m - (-1)^m V_{n-m} \,

[edit] Specific names

The Lucas sequences for some values of P and Q have specific names:

Un(1,−1) : Fibonacci numbers
Vn(1,−1) : Lucas numbers
Un(2,−1) : Pell numbers
Un(1,−2) : Jacobsthal numbers

[edit] Applications

[edit] References