LSM3
From Wikipedia, the free encyclopedia
LSM3 homolog, U6 small nuclear RNA associated (S. cerevisiae)
|
||||||||||||||
Identifiers | ||||||||||||||
Symbol(s) | LSM3; SMX4; USS2; YLR438C | |||||||||||||
External IDs | OMIM: 607283 MGI: 1914928 HomoloGene: 6548 | |||||||||||||
|
||||||||||||||
Orthologs | ||||||||||||||
Human | Mouse | |||||||||||||
Entrez | 27258 | 67678 | ||||||||||||
Ensembl | n/a | ENSMUSG00000034192 | ||||||||||||
Uniprot | n/a | P62311 | ||||||||||||
Refseq | NM_014463 (mRNA) NP_055278 (protein) |
NM_026309 (mRNA) NP_080585 (protein) |
||||||||||||
Location | n/a | Chr 6: 91.48 - 91.49 Mb | ||||||||||||
Pubmed search | [1] | [2] |
LSM3 homolog, U6 small nuclear RNA associated (S. cerevisiae), also known as LSM3, is a human gene.[1]
Sm-like proteins were identified in a variety of organisms based on sequence homology with the Sm protein family (see SNRPD2; MIM 601061). Sm-like proteins contain the Sm sequence motif, which consists of 2 regions separated by a linker of variable length that folds as a loop. The Sm-like proteins are thought to form a stable heteromer present in tri-snRNP particles, which are important for pre-mRNA splicing.[supplied by OMIM][1]
[edit] References
[edit] Further reading
- Salgado-Garrido J, Bragado-Nilsson E, Kandels-Lewis S, Séraphin B (1999). "Sm and Sm-like proteins assemble in two related complexes of deep evolutionary origin.". EMBO J. 18 (12): 3451-62. doi: . PMID 10369684.
- Achsel T, Brahms H, Kastner B, et al. (1999). "A doughnut-shaped heteromer of human Sm-like proteins binds to the 3'-end of U6 snRNA, thereby facilitating U4/U6 duplex formation in vitro.". EMBO J. 18 (20): 5789-802. doi: . PMID 10523320.
- Friesen WJ, Dreyfuss G (2000). "Specific sequences of the Sm and Sm-like (Lsm) proteins mediate their interaction with the spinal muscular atrophy disease gene product (SMN).". J. Biol. Chem. 275 (34): 26370-5. doi: . PMID 10851237.
- Eystathioy T, Peebles CL, Hamel JC, et al. (2002). "Autoantibody to hLSm4 and the heptameric LSm complex in anti-Sm sera.". Arthritis Rheum. 46 (3): 726-34. doi: . PMID 11920408.
- Jurica MS, Licklider LJ, Gygi SR, et al. (2002). "Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis.". RNA 8 (4): 426-39. PMID 11991638.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899-903. doi: . PMID 12477932.
- Ingelfinger D, Arndt-Jovin DJ, Lührmann R, Achsel T (2003). "The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci.". RNA 8 (12): 1489-501. PMID 12515382.
- Lehner B, Semple JI, Brown SE, et al. (2004). "Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region.". Genomics 83 (1): 153-67. PMID 14667819.
- Lehner B, Sanderson CM (2004). "A protein interaction framework for human mRNA degradation.". Genome Res. 14 (7): 1315-23. doi: . PMID 15231747.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121-7. doi: . PMID 15489334.
- Stelzl U, Worm U, Lalowski M, et al. (2005). "A human protein-protein interaction network: a resource for annotating the proteome.". Cell 122 (6): 957-68. doi: . PMID 16169070.
- Rual JF, Venkatesan K, Hao T, et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network.". Nature 437 (7062): 1173-8. doi: . PMID 16189514.