User:Lord Matt/madness

From Wikipedia, the free encyclopedia

Some Fun with assumed distributions - ignore me

f(x) = \sum_{n=0}^ {x-1} 2^n

let B = Number of Indexed Backlinks

f(x) \approx \sqrt {Backlinks}

\sqrt {Backlinks} \approx \sum_{n=0}^ {PR-1} 2^n

My PR Factor Function M M(x,B) = \frac {\sqrt[4] {B}} {x}

Exact PR Point function g g(x) = \sqrt \frac{f(x)} {x}

Logarythmic distence to next g(x+1)

D(x) = g(x + 1) − g(x)

long hand D(x) =  g(x+1) - g(x) =  \sqrt {\frac{f(x+1)} {x+1}} - \sqrt {\frac{f(x)} {x}}


Estimated Percentage of the distence to the next level

\frac{D(Pagerank)} {M(Pagerank,Backlinks)} * 100

Full Math

\frac{\sqrt {\frac{f(Pagerank+1)} {Pagerank+1}} - \sqrt {\frac{f(Pagerank)} {Pagerank}}} {\frac {\sqrt[4] {Backlinks}} {Pagerank}} * 100

\sum_{0}^ {PR} 2^n

\frac{\sqrt {\frac{\sum_{n=0}^ {PR} 2^n} {Pagerank+1}} - \sqrt {\frac{\sum_{n=0}^ {PR-1} 2^n} {Pagerank}}} {\frac {\sqrt[4] {Backlinks}} {Pagerank}} * 100

g(x) = \sqrt \frac{f(x)} {PR}

\sqrt \frac{f(PR)} {PR} - \frac {\sqrt[4] {Backlinks}} {PR}

(1 - (4th root of B) / PR)

square root(15 + 16) / 5 = 1.11355287
(4th root of 237) / 4    = 0.980905332
 square root(15) / 4     = 0.968245837
(4th root of 237) / 5    = 0.784724265


\left = a_0 + a_1 (x-c) + a_2 (x-c)^2 + a_3 (x-c)^3 + \cdots