Lommel function
From Wikipedia, the free encyclopedia
The Lommel differential equation is an inhomogeneous form of the Bessel differential equation:
Two solutions are given by the Lommel functions sμ,ν(z) and Sμ,ν(z), introduced by Eugen von Lommel (1880),
where Jν(z) is a Bessel function of the first kind, and Yν(z) a Bessel function of the second kind.
[edit] See also
[edit] References
- Erdélyi, Arthur; Magnus, Wilhelm; Oberhettinger, Fritz & Tricomi, Francesco G. (1953), Higher transcendental functions. Vol II, McGraw-Hill Book Company, Inc., New York-Toronto-London, MR0058756
- Lommel, E. (1880), “Zur Theorie der Bessel'schen Funktionen IV”, Math. Ann. 16: 183–208
- Solomentsev, E.D. (2001), “Lommel function”, in Hazewinkel, Michiel, Encyclopaedia of Mathematics, Kluwer Academic Publishers, ISBN 978-1556080104
[edit] External links
- Weisstein, Eric W. "Lommel Differential Equation." From MathWorld--A Wolfram Web Resource.
- Weisstein, Eric W. "Lommel Function." From MathWorld--A Wolfram Web Resource.