Local martingale

From Wikipedia, the free encyclopedia

In mathematics, a local martingale is a type of stochastic process, satisfying the localized version of the martingale property.

[edit] Definition

Let (Ω, FP) be a probability space; let F = { Ft | t ≥ 0 } be a filtration of F; let X : [0, +∞) × Ω → S be an F-adapted stochastic process taking values in a measurable space (S, Σ). Then X is called an F-local martingale if there exists a sequence of F-stopping times τk : Ω → [0, +∞) such that

1_{\{\tau_k>0\}}X_t^{\tau_{k}} := 1_{\{\tau_k>0\}}X_{\min \{ t, \tau_k \}}
is an F-martingale for every k.

[edit] References

Languages