List of vector identities

From Wikipedia, the free encyclopedia

This article lists a few helpful mathematical identities which are useful in vector algebra.

Contents

[edit] Triple products

  • \vec{A} \times (\vec{B} \times \vec{C}) = (\vec{C} \times \vec{B}) \times \vec{A} = \vec{B}(\vec{A} \cdot \vec{C}) - \vec{C}(\vec{A} \cdot \vec{B})
  • \vec{A}\cdot(\vec{B}\times \vec{C}) = \vec{B}\cdot(\vec{C}\times \vec{A}) = \vec{C}\cdot(\vec{A}\times \vec{B})

these can be proved by giving arbitrary components to A, B, and C,

\vec{A} = (a_x, a_y, a_z)
\vec{B} = (b_x, b_y, b_z)
\vec{C} = (c_x, c_y, c_z)

then finding the values of each statement, such as \vec{B}\times \vec{C}, in terms of the generic components will show that both sides of the equation are equal.

[edit] Other products

[edit] Product rules

  • \vec{\nabla} (fg) = f(\vec{\nabla}g) + g(\vec{\nabla} f)
  • \vec{\nabla}(\vec{A} \cdot \vec{B}) = \vec{A} \times (\vec{\nabla} \times \vec{B})+\vec{B} \times (\vec{\nabla} \times \vec{A})+(\vec{A} \cdot \vec{\nabla})\vec{B}+(\vec{B} \cdot \vec{\nabla})\vec{A}
  • \vec{\nabla} \cdot (f\vec{A})=f(\vec{\nabla} \cdot \vec{A})+\vec{A} \cdot (\vec{\nabla} f)
  • \vec{\nabla} \cdot (\vec{A} \times \vec{B})=\vec{B} \cdot (\vec{\nabla} \times \vec{A})-\vec{A} \cdot (\vec{\nabla} \times \vec{B})
  • \nabla\times (\vec{A}\times\vec{B})= (\vec{B}\cdot\nabla) \vec{A}-(\vec{A}\cdot\nabla)\vec{B} + \vec{A} (\nabla\cdot\vec{B}) - \vec{B}(\nabla\cdot\vec{A})
  • \nabla\times (\vec{A}\times\vec{B})= \vec{A} \times (\nabla\times\vec{B}) - \vec{B} \times (\nabla\times\vec{A}) - (\vec{A}\times\nabla) \times \vec{B} + (\vec{B}\times\nabla) \times \vec{A}
  • \nabla\times (f\vec{A})=f(\nabla\times\vec{A})+(\nabla f)\times\vec{A}

[edit] Green's first identity

  •  \vec{\nabla} \cdot \left( f \vec{\nabla} f \right) = f \vec{\nabla} \cdot \left( \vec{\nabla} f \right) + \left( \vec{\nabla} f \cdot \vec{\nabla} f \right) = f \nabla^2 f + \left( \vec{\nabla} f \cdot \vec{\nabla} f \right)
    therefore
     f \nabla^2 f = \vec{\nabla} \cdot \left( f \vec{\nabla} f \right) - \left( \vec{\nabla} f \cdot \vec{\nabla} f \right)

[edit] Fundamental theorems

Divergence theorem

  • \int_{V} (\vec{\nabla} \cdot \vec{A}) \,dv = \oint_{S} \vec{A} \cdot d\vec{a}

Stokes' theorem

  •  \int_{S} (\nabla \times \vec{A}) \cdot d\vec{a} = \oint_{C} \vec{A} \cdot d\vec{l}

[edit] See also

Languages