List of uniform polyhedra by spherical triangle

From Wikipedia, the free encyclopedia

Polyhedron
Class Number and properties
Platonic solids
(5, convex, regular)
Archimedean solids
(13, convex, uniform)
Kepler-Poinsot solids
(4, regular, non-convex)
Uniform polyhedra
(75, uniform)
Prismatoid:
prisms, antiprisms etc.
(4 infinite uniform classes)
Polyhedra tilings (11 regular, in the plane)
Quasi-regular polyhedra
(8)
Johnson solids (92, convex, non-uniform)
Pyramids and Bipyramids (infinite)
Stellations Stellations
Polyhedral compounds (5 regular)
Deltahedra (Deltahedra,
equalatial triangle faces)
Snub polyhedra
(12 uniform, not mirror image)
Zonohedron (Zonohedra,
faces have 180°symmetry)
Dual polyhedron
Self-dual polyhedron (infinite)
Catalan solid (13, Archimedean dual)

There are many relations among the uniform polyhedron.

Here they are grouped by the Wythoff symbol

Contents

[edit] Key

Image:Image
Name
Bowers pet name
V Number of vertices,E Number of edges,F Number of faces=Face configuration
?=Euler characteristic, group=Symmetry group
Wythoff symbol - Vertex figure
W - Wenninger number, U - Uniform number, K- Kalido number, C -Coxeter number
alternative name
second alternative name

The vertex figure can be discovered by considering the Wythoff symbol:

  • p|q r - 2p edges, alternating q-gons and r-gons. Vertex figure (q.r)p.
  • p|q 2 - p edges, q-gons (here r=2 so the r-gons are degenerate lines).
  • 2|q r - 4 edges, alternating q-gons and r-gons
  • q r|p - 4 edges, 2p-gons, q-gons, 2p-gons r-gons, Vertex figure 2p.q.2p.r.
  • q 2|p - 3 edges, 2p-gons, q-gons, 2p-gons, Vertex figure 2p.q.2p.
  • p q r|- 3 edges, 2p-gons, 2q-gons, 2r-gons, vertex figure 2p.2q.2r

[edit] Convex

Spherical triangle

{\pi\over p}\ {\pi\over q}\ {\pi\over r}

p|q r q|p r r|p q q r|p p r|q p q|r p q r| |p q r
{\pi\over 3}\ {\pi\over 3}\ {\pi\over 2}

Tetrahedron
Tet
V 4,E 6,F 4=4{3}
χ=2, group=Td
3 | 2 3
| 2 2 2 - 3.3.3
W1, U01, K06, C15

Octahedron

Truncated tetrahedron
Tut
V 12,E 18,F 8=4{3}+4{6}
χ=2, group=Td
2 3 | 3 - 3.6.6
W6, U02, K07, C16

Cuboctahedron
{\pi\over 4}\ {\pi\over 3}\ {\pi\over 2}

Octahedron
Oct
V 6,E 12,F 8=8{3}
χ=2, group=Oh
4 | 2 3
2 | 3 3
| 3 2 2 - 3.3.3.3
W2, U05, K10, C17


Hexahedron
Cube
V 8,E 12,F 6=6{4}
χ=2, group=Oh
3 | 2 4
2 4 | 2
2 2 2 | - 4.4.4
W3, U06, K11, C18


Cuboctahedron
Co
V 12,E 24,F 14=8{3}+6{4}
χ=2, group=Oh
and Th
2 | 3 4
3 3 | 2 - 3.4.3.4
W11, U07, K12, C19


Truncated cube
Tic
V 24,E 36,F 14=8{3}+6{8}
χ=2, group=Oh
2 3 | 4 - 3.8.8
W8, U09, K14, C21
Truncated hexahedron


Truncated octahedron
Toe
V 24,E 36,F 14=6{4}+8{6}
χ=2, group=Oh
and Th
2 4 | 3
3 3 2 | - 4.6.6
W7, U08, K13, C20


Rhombicuboctahedron
Sirco
V 24,E 48,F 26=8{3}+(6+12){4}
χ=2, group=Oh
3 4 | 2 - 3.4.4.4
W13, U10, K15, C22
Rhombicuboctahedron


[[Great rhombicuboctahedron
or truncated cuboctahedron]]
Girco
V 48,E 72,F 26=12{4}+8{6}+6{8}
χ=2, group=Oh
2 3 4 | - 4.6.8
W15, U11, K16, C23
Rhombitruncated cuboctahedron Truncated cuboctahedron


Snub cube
Snic
V 24,E 60,F 38=(8+24){3}+6{4}
χ=2, group=O
| 2 3 4 - 3.3.3.3.4
W17, U12, K17, C24

{\pi\over 5}\ {\pi\over 3}\ {\pi\over 2}

Icosahedron
Ike
V 12,E 30,F 20=20{3}
χ=2, group=Ih
and Th
5 | 2 3
| 3 3 2 - 3.3.3.3.3
W4, U22, K27, C25


Dodecahedron
Doe
V 20,E 30,F 12=12{5}
χ=2, group=Ih
3 | 2 5 - 5.5.5
W5, U23, K28, C26


Icosidodecahedron
Id
V 30,E 60,F 32=20{3}+12{5}
χ=2, group=Ih
2 | 3 5 - 3.5.3.5
W12, U24, K29, C28


Truncated dodecahedron
Tid
V 60,E 90,F 32=20{3}+12{10}
χ=2, group=Ih
2 3 | 5 - 3.10.10
W10, U26, K31, C29


Truncated icosahedron
Ti
V 60,E 90,F 32=12{5}+20{6}
χ=2, group=Ih
2 5 | 3 - 5.6.6
W9, U25, K30, C27


Rhombicosidodecahedron
Srid
V 60,E 120,F 62=20{3}+30{4}+12{5}
χ=2, group=Ih
3 5 | 2 - 3.4.5.4
W14, U27, K32, C30
Rhombicosidodecahedron


[[Great rhombicosidodecahedron
or truncated icosadodecahedron]]
Grid
V 120,E 180,F 62=30{4}+20{6}+12{10}
χ=2, group=Ih
2 3 5 | - 4.6.10
W16, U28, K33, C31
Rhombitruncated icosidodecahedron Truncated icosidodecahedron


Snub dodecahedron
Snid
V 60,E 150,F 92=(20+60){3}+12{5}
χ=2, group=I
| 2 3 5 - 3.3.3.3.5
W18, U29, K34, C32

[edit] Non-convex

[edit] a b 2

[edit] 3 3 2

{a\pi\over 3}\ {b\pi\over 3}\ {c\pi\over 2} Group

Spherical triangle

{\pi\over p}\ {\pi\over q}\ {\pi\over r}

p|q r q|p r r|p q q r|p p r|q p q|r p q r| |p q r
{\pi\over 3}\ {\pi\over 2}\ {2\pi\over 3}

Tetrahemihexahedron
Thah
V 6,E 12,F 7=4{3}+3{4}
χ=1, group=Td
3/23 | 2 - 3.4.3/2.4
W67, U04, K09, C36

[edit] 4 3 2

{a\pi\over 4}\ {b\pi\over 3}\ {c\pi\over 2} Group

Spherical triangle

{\pi\over p}\ {\pi\over q}\ {\pi\over r}

p|q r q|p r r|p q q r|p p r|q p q|r p q r| |p q r
{\pi\over 4}\ {2\pi\over 3}\ {\pi\over 2} octahedron cube

Stellated truncated hexahedron
Quith
V 24,E 36,F 14=8{3}+6{8/3}
χ=2, group=Oh
2 3 | 4/3 - 3.8/3.8/3
W92, U19, K24, C66
Quasitruncated hexahedron stellatruncated cube


Uniform great rhombicuboctahedron
Querco
V 24,E 48,F 26=8{3}+(6+12){4}
χ=2, group=Oh
3/24 | 2 - 4.4.4.3/2
W85, U17, K22, C59
Quasirhombicuboctahedron


Small rhombihexahedron
Sroh
V 24,E 48,F 18=12{4}+6{8}
χ=-6, group=Oh
2 4 (3/2 4/2) | - 4.8.4/3.8
W86, U18, K23, C60

{3\pi\over 4}\ {\pi\over 3}\ {\pi\over 2}

Great truncated cuboctahedron
Quitco
V 48,E 72,F 26=12{4}+8{6}+6{8/3}
χ=2, group=Oh
2 34/3 | - 4.6.8/3
W93, U20, K25, C67
Quasitruncated cuboctahedron

{3\pi\over 4}\ {2\pi\over 3}\ {\pi\over 2}

Great rhombihexahedron
Groh
V 24,E 48,F 18=12{4}+6{8/3}
χ=-6, group=Oh
2 4/3 (3/2 4/2) | - 4.8/3.4/3.8/5
W103, U21, K26, C82

[edit] 5 3 2

{a\pi\over 5}\ {b\pi\over 3}\ {c\pi\over 2} Group

Spherical triangle

{\pi\over p}\ {\pi\over q}\ {\pi\over r}

p|q r q|p r r|p q q r|p p r|q p q|r
{2\pi\over 5}\ {\pi\over 3}\ {\pi\over 2}

Great icosahedron
Gike
V 12,E 30,F 20=20{3}
χ=2, group=Ih
5/2 | 2 3 - (35)/2
W41, U53, K58, C69


Great stellated dodecahedron
Gissid
V 20,E 30,F 12=12{5/2}
χ=2, group=Ih
3 | 25/2 - (5/2)3
W22, U52, K57, C68


Great icosidodecahedron
Gid
V 30,E 60,F 32=20{3}+12{5/2}
χ=2, group=Ih
2 | 3 5/2 - 3.5/2.3.5/2
W94, U54, K59, C70


Great stellated truncated dodecahedron
Quitgissid
V 60,E 90,F 32=20{3}+12{10/3}
χ=2, group=Ih
2 3 | 5/3 - 3.10/3.10/3
W104, U66, K71, C83
Quasitruncated great stellated dodecahedron Great stellatruncated dodecahedron


Truncated great icosahedron
Tiggy
V 60,E 90,F 32=12{5/2}+20{6}
χ=2, group=Ih
25/2 | 3 - 6.6.5/2
W95, U55, K60, C71


Uniform great rhombicosidodecahedron
Qrid
V 60,E 120,F 62=20{3}+30{4}+12{5/2}
χ=2, group=Ih
5/33 | 2 - 3.4.5/3.4
W105, U67, K72, C84
Quasirhombicosidodecahedron

p q r| p q r| p q r| |p q r
{3\pi\over 5}\ {\pi\over 3}\ {\pi\over 2}

Rhombicosahedron
Ri
V 60,E 120,F 50=30{4}+20{6}
χ=-10, group=Ih
2 3 (5/4 5/2) | - 4.6.4/3.6/5
W96, U56, K61, C72


Great truncated icosidodecahedron
Gaquatid
V 120,E 180,F 62=30{4}+20{6}+12{10/3}
χ=2, group=Ih
2 35/3 | - 4.6.10/3
W108, U68, K73, C87
Great quasitruncated icosidodecahedron


Great rhombidodecahedron
Gird
V 60,E 120,F 42=30{4}+12{10/3}
χ=-18, group=Ih
2 5/3 (3/2 5/4) | - 4.10/3.4/3.10/7
W109, U73, K78, C89

[edit] 5 5 2

{a\pi\over 5}\ {b\pi\over 5}\ {c\pi\over 2} Group

Spherical triangle

{\pi\over p}\ {\pi\over q}\ {\pi\over r}

p|q r q|p r r|p q q r|p p r|q p q|r
{\pi\over 5}\ {2\pi\over 5}\ {\pi\over 2}

Small stellated dodecahedron
Sissid
V 12,E 30,F 12=12{5/2}
χ=-6, group=Ih
5 | 25/2 - (5/2)5
W20, U34, K39, C43


Great dodecahedron
Gad
V 12,E 30,F 12=12{5}
χ=-6, group=Ih
5/2 | 2 5 - (55)/2
W21, U35, K40, C44


Dodecadodecahedron
Did
V 30,E 60,F 24=12{5}+12{5/2}
χ=-6, group=Ih
2 | 5 5/2 - 5.5/2.5.5/2
W73, U36, K41, C45


Small stellated truncated dodecahedron
Quitsissid
V 60,E 90,F 24=12{5}+12{10/3}
χ=-6, group=Ih
2 5 | 5/3 - 5.10/3.10/3
W97, U58, K63, C74
Quasitruncated small stellated dodecahedron Small stellatruncated dodecahedron


Truncated great dodecahedron
Tigid
V 60,E 90,F 24=12{5/2}+12{10}
χ=-6, group=Ih
25/2 | 5 - 10.10.5/2
W75, U37, K42, C47


Rhombidodecadodecahedron
Raded
V 60,E 120,F 54=30{4}+12{5}+12{5/2}
χ=-6, group=Ih
5/2 5 | 2 - 4.5/2.4.5
W76, U38, K43, C48

p q r| p q r| |p q r
{\pi\over 5}\ {3\pi\over 5}\ {\pi\over 2}

Small rhombidodecahedron
Sird
V 60,E 120,F 42=30{4}+12{10}
χ=-18, group=Ih
2 5 (3/2 5/2) | - 4.10.4/3.10/9
W74, U39, K44, C46


Truncated dodecadodecahedron
Quitdid
V 120,E 180,F 54=30{4}+12{10}+12{10/3}
χ=-6, group=Ih
2 55/3 | - 4.10.10/3
W98, U59, K64, C75
Quasitruncated dodecahedron

[edit] a b 3

[edit] 3 3 3

{a\pi\over 3}\ {b\pi\over 3}\ {c\pi\over 3} Group

Spherical triangle

{\pi\over p}\ {\pi\over q}\ {\pi\over r}

p|q r q|p r r|p q q r|p p r|q p q|r p q r| |p q r
{\pi\over 3}\ {\pi\over 3}\ {2\pi\over 3}

Octahemioctahedron
Oho
V 12,E 24,F 12=8{3}+4{6}
χ=0, group=Oh
3/23 | 3 - 3.6.3/2.6
W68, U03, K08, C37

[edit] 4 3 3

{a\pi\over 4}\ {b\pi\over 3}\ {c\pi\over 3} Group

Spherical triangle

{\pi\over p}\ {\pi\over q}\ {\pi\over r}

p|q r q|p r r|p q q r|p p r|q p q|r p q r| |p q r

[edit] 5 3 3

{a\pi\over 5}\ {b\pi\over 3}\ {c\pi\over 3} Group

Spherical triangle

{\pi\over p}\ {\pi\over q}\ {\pi\over r}

p|q r q|p r r|p q q r|p p r|q p q|r
{3\pi\over 5}\ {\pi\over 3}\ {\pi\over 3}

Great ditrigonal icosidodecahedron
Gidtid
V 20,E 60,F 32=20{3}+12{5}
χ=-8, group=Ih
3/2 | 3 5 - ((3.5)3)/2
W87, U47, K52, C61


Small ditrigonal icosidodecahedron
Sidtid
V 20,E 60,F 32=20{3}+12{5/2}
χ=-8, group=Ih
3 | 5/23 - (3.5/2)3
W70, U30, K35, C39


Great icosihemidodecahedron
Geihid
V 30,E 60,F 26=20{3}+6{10/3}
χ=-4, group=Ih
3 3 | 5/3 - 3.10/3.3.10/3
W106, U71, K76, C85


Small icosihemidodecahedron
Seihid
V 30,E 60,F 26=20{3}+6{10}
χ=-4, group=Ih
3/23 | 5 - 3.10.3/2.10
W89, U49, K54, C63


Great icosicosidodecahedron
Giid
V 60,E 120,F 52=20{3}+12{5}+20{6}
χ=-8, group=Ih
3/25 | 3 - 5.6.3/2.6
W88, U48, K53, C62

p q r| p q r| |p q r
{\pi\over 5}\ {2\pi\over 3}\ {\pi\over 3}

Small icosicosidodecahedron
Siid
V 60,E 120,F 52=20{3}+12{5/2}+20{6}
χ=-8, group=Ih
5/2 3 | 3 - 6.5/2.6.3
W71, U31, K36, C40


Small dodecicosahedron
Siddy
V 60,E 120,F 32=20{6}+12{10}
χ=-28, group=Ih
3 5 (3/2 5/4) | - 6.10.6/5.10/9
W90, U50, K55, C64

[edit] 4 4 3

{a\pi\over 4}\ {b\pi\over 4}\ {c\pi\over 3} Group

Spherical triangle

{\pi\over p}\ {\pi\over q}\ {\pi\over r}

p|q r q|p r r|p q q r|p p r|q p q|r p q r| |p q r
{\pi\over 4}\ {\pi\over 3}\ {3\pi\over 4}

Cubohemioctahedron
Cho
V 12,E 24,F 10=6{4}+4{6}
χ=-2, group=Oh
4/34 | 3 - 4.6.4/3.6
W78, U15, K20, C51


Great cubicuboctahedron
Gocco
V 24,E 48,F 20=8{3}+6{4}+6{8/3}
χ=-4, group=Oh
3 4 | 4/3 - 3.8/3.4.8/3
W77, U14, K19, C50


Cubitruncated cuboctahedron
Cotco
V 48,E 72,F 20=8{6}+6{8}+6{8/3}
χ=-4, group=Oh
3 44/3 | - 6.8.8/3
W79, U16, K21, C52
Cuboctatruncated cuboctahedron

{\pi\over 4}\ {\pi\over 4}\ {2\pi\over 3}

Small cubicuboctahedron
Socco
V 24,E 48,F 20=8{3}+6{4}+6{8}
χ=-4, group=Oh
3/24 | 4 - 4.8.3/2.8
W69, U13, K18, C38

[edit] 5 5 3

{a\pi\over 5}\ {b\pi\over 5}\ {c\pi\over 3} Group

Spherical triangle

{\pi\over p}\ {\pi\over q}\ {\pi\over r}

p|q r q|p r r|p q q r|p p r|q p q|r p q r| |p q r
{\pi\over 3}\ {2\pi\over 5}\ {3\pi\over 5}

Small dodecahemicosahedron
Sidhei
V 30,E 60,F 22=12{5/2}+10{6}
χ=-8, group=Ih
5/35/2 | 3 - 6.5/2.6.5/3
W100, U62, K67, C78


Great dodecicosahedron
Giddy
V 60,E 120,F 32=20{6}+12{10/3}
χ=-28, group=Ih
3 5/3 (3/2 5/2) | - 6.10/3.6/5.10/7
W101, U63, K68, C79


Small dodecicosidodecahedron
Saddid
V 60,E 120,F 44=20{3}+12{5}+12{10}
χ=-16, group=Ih
3/25 | 5 - 5.10.3/2.10
W72, U33, K38, C42

{\pi\over 3}\ {\pi\over 5}\ {4\pi\over 5}

Great dodecahemicosahedron
Gidhei
V 30,E 60,F 22=12{5}+10{6}
χ=-8, group=Ih
5/45 | 3 - 5.6.5/4.6
W102, U65, K70, C81


Small ditrigonal dodecicosidodecahedron
Sidditdid
V 60,E 120,F 44=20{3}+12{5/2}+12{10}
χ=-16, group=Ih
5/33 | 5 - 3.10.5/3.10
W82, U43, K48, C55


Great ditrigonal dodecicosidodecahedron
Gidditdid
V 60,E 120,F 44=20{3}+12{5}+12{10/3}
χ=-16, group=Ih
3 5 | 5/3 - 3.10/3.5.10/3
W81, U42, K47, C54

{\pi\over 5}\ {\pi\over 5}\ {2\pi\over 3}

Small dodecicosidodecahedron
Saddid
V 60,E 120,F 44=20{3}+12{5}+12{10}
χ=-16, group=Ih
3/25 | 5 - 5.10.3/2.10
W72, U33, K38, C42


Great dodecicosidodecahedron
Gaddid
V 60,E 120,F 44=20{3}+12{5/2}+12{10/3}
χ=-16, group=Ih
5/2 3 | 5/3 - 3.10/3.6/5.10/7
W99, U61, K66, C77

{\pi\over 5}\ {\pi\over 3}\ {3\pi\over 5}

Ditrigonal dodecadodecahedron
Ditdid
V 20,E 60,F 24=12{5}+12{5/2}
χ=-16, group=Ih
3 | 5/35 - (5.5/3)3
W80, U41, K46, C53


Icosidodecadodecahedron
Ided
V 60,E 120,F 44=12{5}+12{5/2}+20{6}
χ=-16, group=Ih
5/35 | 3 - 5.6.5/3.6
W83, U44, K49, C56


Small ditrigonal dodecicosidodecahedron
Sidditdid
V 60,E 120,F 44=20{3}+12{5/2}+12{10}
χ=-16, group=Ih
5/33 | 5 - 3.10.5/3.10
W82, U43, K48, C55


Icositruncated dodecadodecahedron
Idtid
V 120,E 180,F 44=20{6}+12{10}+12{10/3}
χ=-16, group=Ih
3 55/3 | - 6.10.10/3
W84, U45, K50, C57
Icosidodecatruncated icosidodecahedron

[edit] a b 5

[edit] 5 5 5

{a\pi\over 5}\ {b\pi\over 5}\ {c\pi\over 5} Group

Spherical triangle

{\pi\over p}\ {\pi\over q}\ {\pi\over r}

p|q r q|p r r|p q q r|p p r|q p q|r p q r| |p q r
{2\pi\over 5}\ {3\pi\over 5}\ {3\pi\over 5}

Great dodecahemidodecahedron
Gidhid
V 30,E 60,F 18=12{5/2}+6{10/3}
χ=-12, group=Ih
5/35/2 | 5/3 - 5/2.10/3.5/3.10/3
W107, U70, K75, C86