Liquefaction of gases
From Wikipedia, the free encyclopedia
Liquefaction of gases includes a number of faces used to convert a gas into a liquid state. The processes are used for scientific, industrial and commercial purposes. Many gases can be put into a liquid state at normal atmospheric pressure by simple cooling; a few, such as carbon dioxide, require pressurization as well. Liquefaction is used for analyzing the fundamental properties of gas molecules (intermolecular forces), for storage of gases, for example: LPG, and in refrigeration and air conditioning. There the gas is liquefied in the condenser, where the heat of vaporization is released, and evaporated in the evaporator, where the heat of vaporization is absorbed. Ammonia was the first such refrigerant, but it has been replaced by compounds derived from petroleum and halogens.
Liquid oxygen is provided to hospitals for conversion to gas for patients suffering from breathing problems, and liquid nitrogen is used by dermatologists and by inseminators to freeze semen. Liquefied chlorine is transported for eventual solution in water, after which it is used for water purification, sanitation of industrial waste, sewage and swimming pools, bleaching of pulp and textiles and manufacture of carbon tetrachloride, glycol and numerous other organic compounds as well as phosgene gas. It was used in warfare in World War I at Flanders ([1]) and in gaseous form at Ypres, Belgium, though the shells were filled with liquid [2].
Liquefaction of helium (4He) led to a Nobel Prize for Heike Kamerlingh Onnes in 1913. At ambient pressure the boiling point of liquefied helium is 4.22 K (-268.93°C). Below 2.17 K liquid 4He has many amazing properties, such as climbing the walls of the vessel, exhibiting zero viscosity, and offering no lift to a wing past which it flows.