Talk:Lipschitz continuity
From Wikipedia, the free encyclopedia
[edit] The definition
The definition here seems to be restricted to R. Other definitions are in higher spaces than R? is this true? http://planetmath.org/encyclopedia/LipschitzCondition.htmlUser A1 06:22, 27 September 2006 (UTC)
- The definition is not restricted to R, Lipshitz functions are defineded on any metric space, in the section on metric spaces in this article. Oleg Alexandrov (talk) 15:12, 27 September 2006 (UTC)
[edit] Property of bilipschitz functions
The following text seems tautological:
- Every bilipschitz function is injective. A bilipschitz function is the same thing as a Lipschitz bijection whose inverse function is also Lipschitz.
In other words, if we define a bilipschitz function as a bijection that is Lipschitz and has a Lipschitz inverse, then it is trivially injective. Ideas? Haseldon 21:18, 9 November 2006 (UTC)
- But this is not how bilipschits functions were defined in the article. The definition was:
If there exists a with
then f is called bilipschitz.
Oleg Alexandrov (talk) 04:08, 10 November 2006 (UTC)
[edit] uniform Lipschitz condition
The text currently states: --- A function f, defined on [a,b], is said to satisfy a uniform Lipschitz condition of order α > 0 on [a,b] if there exists a constant M > 0 such that
| f(x) − f(y) | < M | x − y | ^α
for all x and y in [a,b]. --- which appears to be the same as Hölder continuity. It also appears to be a misuse of the term `uniform', which should mean `independent of x and y', i.e. not locally Lipschitz. Agreed? Jorn74 (talk) 22:11, 18 May 2008 (UTC)
- I agree that "uniform Lipschitz condition of order α " appears the same as Hölder continuity. I think the "uniform" part in the article is right, there is nothing local in that definition. Oleg Alexandrov (talk) 01:53, 19 May 2008 (UTC)