Lipopolysaccharide-binding protein
From Wikipedia, the free encyclopedia
Lipopolysaccharide binding protein
|
||||||||||||||
Identifiers | ||||||||||||||
Symbol(s) | LBP; MGC22233 | |||||||||||||
External IDs | OMIM: 151990 MGI: 1098776 HomoloGene: 3055 | |||||||||||||
|
||||||||||||||
RNA expression pattern | ||||||||||||||
Orthologs | ||||||||||||||
Human | Mouse | |||||||||||||
Entrez | 3929 | 16803 | ||||||||||||
Ensembl | ENSG00000129988 | ENSMUSG00000016024 | ||||||||||||
Uniprot | P18428 | Q61805 | ||||||||||||
Refseq | NM_004139 (mRNA) NP_004130 (protein) |
NM_008489 (mRNA) NP_032515 (protein) |
||||||||||||
Location | Chr 20: 36.41 - 36.44 Mb | Chr 2: 158 - 158.02 Mb | ||||||||||||
Pubmed search | [1] | [2] |
Lipopolysaccharide binding protein, also known as LBP, is a human gene.[1]
LBP is a soluble acute phase protein that binds to bacterial lipopolysaccharide (or LPS) to elicit immune responses by presenting the LPS to important cell surface pattern recognition receptors called CD14 and TLR4.[2]
The protein encoded by this gene is involved in the acute-phase immunologic response to gram-negative bacterial infections. Gram-negative bacteria contain a glycolipid, lipopolysaccharide (LPS), on their outer cell wall. Together with bactericidal permeability-increasing protein (BPI), the encoded protein binds LPS and interacts with the CD14 receptor, probably playing a role in regulating LPS-dependent monocyte responses. Studies in mice suggest that the encoded protein is necessary for the rapid acute-phase response to LPS but not for the clearance of LPS from circulation. This protein is part of a family of structurally and functionally related proteins, including BPI, plasma cholesteryl ester transfer protein (CETP), and phospholipid transfer protein (PLTP). Finally, this gene is found on chromosome 20, immediately downstream of the BPI gene.[1]
[edit] References
- ^ a b Entrez Gene: LBP lipopolysaccharide binding protein.
- ^ Muta T, Takeshige K (2001). "Essential roles of CD14 and lipopolysaccharide-binding protein for activation of toll-like receptor (TLR)2 as well as TLR4 Reconstitution of TLR2- and TLR4-activation by distinguishable ligands in LPS preparations". Eur. J. Biochem. 268 (16): 4580–9. doi: . PMID 11502220.
[edit] Further reading
- Schumann RR, Leong SR, Flaggs GW, et al. (1990). "Structure and function of lipopolysaccharide binding protein.". Science 249 (4975): 1429–31. PMID 2402637.
- Wilde CG, Seilhamer JJ, McGrogan M, et al. (1994). "Bactericidal/permeability-increasing protein and lipopolysaccharide (LPS)-binding protein. LPS binding properties and effects on LPS-mediated cell activation.". J. Biol. Chem. 269 (26): 17411–6. PMID 7517398.
- Gray PW, Corcorran AE, Eddy RL, et al. (1993). "The genes for the lipopolysaccharide binding protein (LBP) and the bactericidal permeability increasing protein (BPI) are encoded in the same region of human chromosome 20.". Genomics 15 (1): 188–90. doi: . PMID 8432532.
- Park CT, Wright SD (1996). "Plasma lipopolysaccharide-binding protein is found associated with a particle containing apolipoprotein A-I, phospholipid, and factor H-related proteins.". J. Biol. Chem. 271 (30): 18054–60. PMID 8663389.
- Nanbo A, Nishimura H, Nagasawa S (1997). "Lipopolysaccharide binding protein from normal human plasma purified with high efficiency.". Protein Expr. Purif. 10 (1): 55–60. doi: . PMID 9179291.
- Hubacek JA, Büchler C, Aslanidis C, Schmitz G (1997). "The genomic organization of the genes for human lipopolysaccharide binding protein (LBP) and bactericidal permeability increasing protein (BPI) is highly conserved.". Biochem. Biophys. Res. Commun. 236 (2): 427–30. doi: . PMID 9240454.
- Jack RS, Fan X, Bernheiden M, et al. (1997). "Lipopolysaccharide-binding protein is required to combat a murine gram-negative bacterial infection.". Nature 389 (6652): 742–5. doi: . PMID 9338787.
- Kirschning CJ, Au-Young J, Lamping N, et al. (1998). "Similar organization of the lipopolysaccharide-binding protein (LBP) and phospholipid transfer protein (PLTP) genes suggests a common gene family of lipid-binding proteins.". Genomics 46 (3): 416–25. doi: . PMID 9441745.
- Beamer LJ, Carroll SF, Eisenberg D (1998). "The BPI/LBP family of proteins: a structural analysis of conserved regions.". Protein Sci. 7 (4): 906–14. PMID 9568897.
- Sato M, Saeki Y, Tanaka K, Kaneda Y (1999). "Ribosome-associated protein LBP/p40 binds to S21 protein of 40S ribosome: analysis using a yeast two-hybrid system.". Biochem. Biophys. Res. Commun. 256 (2): 385–90. doi: . PMID 10079194.
- Vreugdenhil AC, Dentener MA, Snoek AM, et al. (1999). "Lipopolysaccharide binding protein and serum amyloid A secretion by human intestinal epithelial cells during the acute phase response.". J. Immunol. 163 (5): 2792–8. PMID 10453023.
- Vesy CJ, Kitchens RL, Wolfbauer G, et al. (2000). "Lipopolysaccharide-binding protein and phospholipid transfer protein release lipopolysaccharides from gram-negative bacterial membranes.". Infect. Immun. 68 (5): 2410–7. PMID 10768924.
- Labéta MO, Vidal K, Nores JE, et al. (2000). "Innate recognition of bacteria in human milk is mediated by a milk-derived highly expressed pattern recognition receptor, soluble CD14.". J. Exp. Med. 191 (10): 1807–12. PMID 10811873.
- Dentener MA, Vreugdenhil AC, Hoet PH, et al. (2000). "Production of the acute-phase protein lipopolysaccharide-binding protein by respiratory type II epithelial cells: implications for local defense to bacterial endotoxins.". Am. J. Respir. Cell Mol. Biol. 23 (2): 146–53. PMID 10919979.
- Nagaoka I, Hirota S, Niyonsaba F, et al. (2001). "Cathelicidin family of antibacterial peptides CAP18 and CAP11 inhibit the expression of TNF-alpha by blocking the binding of LPS to CD14(+) cells.". J. Immunol. 167 (6): 3329–38. PMID 11544322.
- Gutsmann T, Müller M, Carroll SF, et al. (2001). "Dual role of lipopolysaccharide (LPS)-binding protein in neutralization of LPS and enhancement of LPS-induced activation of mononuclear cells.". Infect. Immun. 69 (11): 6942–50. doi: . PMID 11598069.
- Iovine N, Eastvold J, Elsbach P, et al. (2002). "The carboxyl-terminal domain of closely related endotoxin-binding proteins determines the target of protein-lipopolysaccharide complexes.". J. Biol. Chem. 277 (10): 7970–8. doi: . PMID 11773072.
- Deloukas P, Matthews LH, Ashurst J, et al. (2002). "The DNA sequence and comparative analysis of human chromosome 20.". Nature 414 (6866): 865–71. doi: . PMID 11780052.
- Kaden J, Zwerenz P, Lambrecht HG, Dostatni R (2002). "Lipopolysaccharide-binding protein as a new and reliable infection marker after kidney transplantation.". Transpl. Int. 15 (4): 163–72. doi: . PMID 11976738.
- Reyes O, Vallespi MG, Garay HE, et al. (2002). "Identification of single amino acid residues essential for the binding of lipopolysaccharide (LPS) to LPS binding protein (LBP) residues 86-99 by using an Ala-scanning library.". J. Pept. Sci. 8 (4): 144–50. doi: . PMID 11991204.
[edit] External links
This article incorporates text from the United States National Library of Medicine, which is in the public domain.