Lie algebra bundle

From Wikipedia, the free encyclopedia

In Mathematics, a weak Lie algebra bundle

 \xi=(\xi, p, X, \theta)\,

is a vector bundle \xi\, over a base space X together with a morphism

 \theta : \xi \oplus \xi \rightarrow \xi

which induces a Lie algebra structure on each fibre  \xi_x\, .

A Lie algebra bundle  \xi=(\xi, p, X)\, is a vector bundle in which each fibre is a Lie algebra and for every x in X, there is an open set U containing x, a Lie algebra L and a homeomorphism

 \phi:U\times L\to p^{-1}(U)\,

such that

 \phi_x:x\times L \rightarrow p^{-1}(x)\,

is a Lie algebra isomorphism.

Any Lie algebra bundle is a weak Lie algebra bundle but the converse need not be true in general.

[edit] References

  • A.Douady et M.Lazard, Espaces fibres en algebre de Lie et en groups, Invent. math., Vol. 1, 1966, pp.133-151
  • B.S.Kiranagi, Lie Algebra bundles, Bull. Sci. Math., 2e serie, 102(1978), 57-62.
  • B.S.Kiranagi, Semi simple Lie algebra bundles, Bull. Math de la Sci. Math de la R.S.de Roumaine, 27 (75), 1983, 253-257.
  • B.S.Kiranagi and G.Prema, On complete reducibility of Module Bundles, Bull. Austral. Math Soc., 28 (1983), 401-409.
  • B.S.Kiranagi and G.Prema, Cohomology of Lie algebra bundles and its applications, Ind. J. Pure and Appli. Math. 16(7): 1985, 731/735.
  • B.S.Kiranagi and G.Prema, Lie algebra bundles defined by Jordan algebra bundles, Bull. Math. Soc.Sci.Math.Rep.Soc. Roum., Noun. Ser. 33 (81), 1989, 255-264.
  • B.S.Kiranagi and G.Prema, On complete reducibility of Bimodule bundles, Bull. Math. Soc. Sci.Math. Repose; Roum, Nouv.Ser. 33 (81), 1989, 249-255.
  • B.S.Kiranagi and G.Prema, A decomposition theorem of Lie algebra Bundles, Communications in Algebra 18 (6), 1990, 1869-1877 .
  • B.S.Kiranagi, G.Prema and C.Chidambara, Rigidity theorem for Lie algebra Bundles, Communications in Algebra 20 (6), 1992, pp. 1549 - 1556.

[edit] See also