Leader election

From Wikipedia, the free encyclopedia

In distributed computing, leader election is the process of designating a single process as the organizer of some task distributed among several computers (nodes). Before the task is begun, all network nodes are unaware which node will serve as the "leader," or coordinator, of the task. After a leader election algorithm has been run, however, each node throughout the network recognizes a particular, unique node as the task leader.

The network nodes communicate among themselves in order to decide which of them will get into the "leader" state. For that, they need some method in order to break the symmetry among them. For example, if each node has unique identities, then the nodes can compare their identities, and decide that the node with the highest identity is the leader.

The definition of the problem is often attributed to LeLann, who formalized it as a method to create a new token in a token ring network in which the token has been lost.

Leader election algorithms are designed to be economical in terms of total bytes transmitted, and time. The algorithm suggested by Gallager, Humblet, and Spira [1] for general undirected graphs has had a strong impact on the design of distributed algorithms in general, and won the Dijkstra Prize for an influential paper in distributed computing.

Many other algorithms were suggested for different kind of network graphs, such as undirected rings, unidirectional rings, complete graphs, grids, directed Euler graphs, and others. A general method that decouples the issue of the graph family from the design of the leader election algorithm was suggested by Korach, Kutten, and Moran [2].

[edit] References

  1. ^ R. G. Gallager, P. A. Humblet, and P. M. Spira (January 1983). "A Distributed Algorithm for Minimum-Weight Spanning Trees". ACM Transactions on Programming Languages and Systems 5 (1): 66–77. doi:10.1145/357195.357200. 
  2. ^ Ephraim Korach, Shay Kutten, Shlomo Moran (1990). "A Modular Technique for the Design of Efficient Distributed Leader Finding Algorithms". ACM Transactions on Programming Languages and Systems 12 (1): 84–101. doi:10.1145/77606.77610. 
Languages