Layer cake representation
From Wikipedia, the free encyclopedia
In mathematics, the layer cake representation of a non-negative, real-valued measurable function f defined on n-dimensional Euclidean space Rn is the formula
where 1E denotes the indicator function of a subset E ⊆ Rn and L(f, t) denotes the super-level set
The layer cake representation follows easily from the formula
The layer cake representation takes its name from the representation of the value f(x) as the sum of contributions from the "layers" L(f, t): "layers"/values t below f(x) contribute to the integral, while values t above f(x) do not.
[edit] References
- Gardner, Richard J. (2002). "The Brunn-Minkowski inequality". Bull. Amer. Math. Soc. (N.S.) 39 (3): 355–405 (electronic). doi: . ISSN 0273-0979.
- Lieb, Elliott H., & Loss, Michael (2001). Analysis, Second edition, Providence, RI: American Mathematical Society. ISBN 0-8218-2783-9.