User:Krauss/digito

From Wikipedia, the free encyclopedia

Art. 2007-027

  • eqn0: h_p^2
  • eqn1: N(0, \sigma_w^2)
  • eqn2: \sigma_w^2
  • eqn3: \sigma_G^2
  • eqn4: \sigma_G^2 = \sigma_A^2 + \sigma_D^2
  • eqn5: \sigma_A^2
  • eqn6: \sigma_A^2 = \sum_{l=1}^{20} a_l^2 / 2
  • eqn7: \sigma_A^2 = L/2
  • eqn8: \sigma_D^2
  • eqn9: \sigma_D^2 = 0
  • eqn10: h_F{_2} ^2
  • eqn11: e \sim N(0, \sigma _e^2)
  • eqn12: \sigma _e^2
  • eqn13: \sigma _w^2 / \sigma _e^2
  • eqn14: \sigma_p^2
  • eqn15: (\sigma_p^2 = 7/4 \sigma_A^2)
  • eqn16: \sigma_d^2
  • eqn17: (\sigma_D^2 = \sigma_{Gd}^2 + \sigma_w^2)
  • eqn18: \sigma_{Gd}^2
  • eqn19: \sigma_{Gd}^2 = 1/8 \sigma_A^2
  • eqn20: (h_F{_2} ^2)
  • eqn21: \textrm {\textbf{y}} + \textrm {\textbf{X}} \beta + \textrm {\textbf{Za}} + \textrm {\textbf{e}}
  • eqn22: a˜N(0,G)
  • eqn23: G = A \sigma_a^2
  • eqn24: e˜N(0,R)
  • eqn25: R = I \sigma_e^2
  • eqn26: I \sigma_p^2
  • eqn27: \sigma_a^2
  • eqn28: (\sigma_p^2)
  • eqn29: \textrm {\textbf{A}}\sigma_A^2
  • eqn30: (\sigma_A^2)
  • eqn31: \otimes
  • eqn32: {\hat{\textbf{a}}}
  • eqn33: (\hat{\beta})
  • eqn34: h_p^2 \geq 50\%
  • eqn35: \sqrt {h_p^2}
  • eqn36: (\sqrt {h_p^2})
  • eqn37: \hat{h_p^2}
  • eqn38: \hat{\sigma_p^2}
  • eqn39: \left[ E\textrm(\textbf{a}) = 0 \right]
  • eqn40: E (\hat{\textbf{a}}) = E({\textbf{a}})
  • eqn41: \hat{\textbf{a}}
  • eqn42: \left[ E \hat{\textrm(\textbf{a})} = \textrm(\textbf{a}) \right]
  • eqn43: h_p^2 \to 100\%
  • eqn44: \hat{\textbf{a}}=E(\textbf{a/y}) \to \textbf{a}
  • eqn45: h_p^2 \to 0
  • eqn46: \hat{\textbf{a}}=E(\textbf{a/y}) \to 0