Talk:Klein–Gordon equation

From Wikipedia, the free encyclopedia

WikiProject Mathematics
This article is within the scope of WikiProject Mathematics, which collaborates on articles related to mathematics.
Mathematics rating: Start Class Mid Priority  Field: Mathematical physics
WikiProject Physics This article is within the scope of WikiProject Physics, which collaborates on articles related to physics.
Start This article has been rated as Start-Class on the assessment scale.
Low This article is on a subject of Low importance within physics.

Help with this template

When did they come up with this mod to Schrodingers equation??. A bit of history would be good here.--Light current 03:56, 2 October 2005 (UTC)

From memory, the equation came very shortly after Schrodinger's equation. It was the first attempt to form a relativistic wave equation. I am pretty sure it predated the Dirac equation. I think it was a pretty obvious extension of Schrodinger's equation to the relativistic case, which is why lots of people thought of it at the same time. --DannyWilde 04:15, 2 October 2005 (UTC)
Insufficient. Currently the Dirac equation page does a better job than this page, explaining the original physical motivation for its consideration as well as the reasons for the later abandonment of the K-G eq (as per a typical intro to RQM course). This page must furthermore explain how those reasons were nullified in order for the K-G eq to finally be readopted in modern QFT. E.g., potentially negative probability density does seem absurd, why isn't that a problem if describing a scalar field? 150.203.48.127 (talk) 02:52, 17 April 2008 (UTC)

[edit] Particles?

It seems inappropriate to say that the equation applies to particles in anyway, since the modern interpretation is that it is the equation satisfied by all quantum fields (not just scalars/pseudoscalars). Threepounds 02:49, 15 November 2005 (UTC)

Perhaps it would be useful to point out that while the Klein-Gordon equation yields the incorrect result for spin-1/2 particles (one needs the Dirac equation for that), it does yield the correct results for spin-0 particles such as pions.--Brennan 22:57, 27 January 2006 (UTC)

Does anyone has comments about the fact that Klein-Gordon equation is a second order equation? It seems that we can write first order equations only for half-integer spin particles...? What about photons and other spin 1 particles? Finally indeed there exist no spin 0 elementary particle discovered till now. Does this mean anything?. User:Dave.bradi 14:00, 15 November 2007 (UTC)

[edit] B. Roy Frieden's anonymous POV-pushing edits

B. Roy Frieden claims to have developed a "universal method" in physics, based upon Fisher information. He has written a book about this. Unfortunately, while Frieden's ideas initially appear interesting, his claimed method is conversial: Frieden's work is highly controversial; see for example

Note that Frieden is Prof. Em. of Optical Sciences at the University of Arizona. The data.optics.arizona.edu anon has used the following IPs to make a number of questionable edits:

  1. 150.135.248.180 (talk · contribs)
    1. 20 May 2005 confesses to being Roy Frieden in real life
    2. 6 June 2006: adds cites of his papers to Extreme physical information
    3. 23 May 2006 adds uncritical description of his own work in Lagrangian and uncritically cites his own controversial book
    4. 22 October 2004 attributes the uncertainty principle to the Cramer-Rao inequality, which is potentially misleading
    5. 21 October 2004 adds uncritical mention of his controversial claim that the Maxwell-Boltzmann distribution can be obtained via his "method"
    6. 21 October 2004 adds uncritical mention of his controversial claim that the Klein-Gordon equation can be "derived" via his "method"
  2. 150.135.248.126 (talk · contribs)
    1. 9 September 2004 adds uncritical description of his work to Fisher information
    2. 8 September 2004 adds uncritical description of his highly dubious claim that EPI is a general approach to physics to Physical information
    3. 16 August 2004 confesses IRL identity
    4. 13 August 2004 creates uncritical account of his work in new article, Extreme physical information
    5. 11 August 2004 creates his own wikibiostub, B Roy Frieden

These POV-pushing edits should be modified to more accurately describe the status of Frieden's work.---CH 23:54, 16 June 2006 (UTC)