KIAA1303
From Wikipedia, the free encyclopedia
Raptor
|
||||||||
Identifiers | ||||||||
Symbol(s) | KIAA1303; | |||||||
External IDs | OMIM: 607130 MGI: 1921620 HomoloGene: 80210 | |||||||
|
||||||||
RNA expression pattern | ||||||||
Orthologs | ||||||||
Human | Mouse | |||||||
Entrez | 57521 | 74370 | ||||||
Ensembl | ENSG00000141564 | ENSMUSG00000025583 | ||||||
Uniprot | Q8N122 | Q6ZPU3 | ||||||
Refseq | NM_020761 (mRNA) NP_065812 (protein) |
NM_028898 (mRNA) NP_083174 (protein) |
||||||
Location | Chr 17: 76.13 - 76.55 Mb | Chr 11: 119.42 - 119.72 Mb | ||||||
Pubmed search | [1] | [2] |
Raptor, also known as KIAA1303, is a human gene.[1]
[edit] References
[edit] Further reading
- Nagase T, Kikuno R, Ishikawa KI, et al. (2000). "Prediction of the coding sequences of unidentified human genes. XVI. The complete sequences of 150 new cDNA clones from brain which code for large proteins in vitro.". DNA Res. 7 (1): 65–73. PMID 10718198.
- Kim DH, Sarbassov DD, Ali SM, et al. (2002). "mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery.". Cell 110 (2): 163–75. PMID 12150925.
- Hara K, Maruki Y, Long X, et al. (2002). "Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action.". Cell 110 (2): 177–89. PMID 12150926.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi: . PMID 12477932.
- Nojima H, Tokunaga C, Eguchi S, et al. (2003). "The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif.". J. Biol. Chem. 278 (18): 15461–4. doi: . PMID 12604610.
- Kim DH, Sarbassov DD, Ali SM, et al. (2003). "GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR.". Mol. Cell 11 (4): 895–904. PMID 12718876.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs.". Nat. Genet. 36 (1): 40–5. doi: . PMID 14702039.
- Oshiro N, Yoshino K, Hidayat S, et al. (2004). "Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function.". Genes Cells 9 (4): 359–66. doi: . PMID 15066126.
- Sarbassov DD, Ali SM, Kim DH, et al. (2004). "Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton.". Curr. Biol. 14 (14): 1296–302. doi: . PMID 15268862.
- Beausoleil SA, Jedrychowski M, Schwartz D, et al. (2004). "Large-scale characterization of HeLa cell nuclear phosphoproteins.". Proc. Natl. Acad. Sci. U.S.A. 101 (33): 12130–5. doi: . PMID 15302935.
- Jacinto E, Loewith R, Schmidt A, et al. (2004). "Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive.". Nat. Cell Biol. 6 (11): 1122–8. doi: . PMID 15467718.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi: . PMID 15489334.
- Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005). "Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex.". Science 307 (5712): 1098–101. doi: . PMID 15718470.
- Long X, Lin Y, Ortiz-Vega S, et al. (2005). "Rheb binds and regulates the mTOR kinase.". Curr. Biol. 15 (8): 702–13. doi: . PMID 15854902.
- Sarbassov DD, Sabatini DM (2006). "Redox regulation of the nutrient-sensitive raptor-mTOR pathway and complex.". J. Biol. Chem. 280 (47): 39505–9. doi: . PMID 16183647.
- Tzatsos A, Kandror KV (2006). "Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation.". Mol. Cell. Biol. 26 (1): 63–76. doi: . PMID 16354680.
- Shah OJ, Hunter T (2006). "Turnover of the active fraction of IRS1 involves raptor-mTOR- and S6K1-dependent serine phosphorylation in cell culture models of tuberous sclerosis.". Mol. Cell. Biol. 26 (17): 6425–34. doi: . PMID 16914728.
- Kudchodkar SB, Yu Y, Maguire TG, Alwine JC (2006). "Human cytomegalovirus infection alters the substrate specificities and rapamycin sensitivities of raptor- and rictor-containing complexes.". Proc. Natl. Acad. Sci. U.S.A. 103 (38): 14182–7. doi: . PMID 16959881.
- Beausoleil SA, Villén J, Gerber SA, et al. (2006). "A probability-based approach for high-throughput protein phosphorylation analysis and site localization.". Nat. Biotechnol. 24 (10): 1285–92. doi: . PMID 16964243.
- Olsen JV, Blagoev B, Gnad F, et al. (2006). "Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.". Cell 127 (3): 635–48. doi: . PMID 17081983.