KEAP1
From Wikipedia, the free encyclopedia
Kelch-like ECH-associated protein 1
|
||||||||||||||
PDB rendering based on 1u6d. | ||||||||||||||
Available structures: 1u6d, 1x2j, 1x2r, 1zgk, 2flu | ||||||||||||||
Identifiers | ||||||||||||||
Symbol(s) | KEAP1; INrf2; KIAA0132; KLHL19; MGC10630; MGC1114; MGC20887; MGC4407; MGC9454 | |||||||||||||
External IDs | OMIM: 606016 MGI: 1858732 HomoloGene: 8184 | |||||||||||||
|
||||||||||||||
RNA expression pattern | ||||||||||||||
Orthologs | ||||||||||||||
Human | Mouse | |||||||||||||
Entrez | 9817 | 50868 | ||||||||||||
Ensembl | ENSG00000079999 | ENSMUSG00000003308 | ||||||||||||
Uniprot | Q14145 | O89076 | ||||||||||||
Refseq | NM_012289 (mRNA) NP_036421 (protein) |
NM_016679 (mRNA) NP_057888 (protein) |
||||||||||||
Location | Chr 19: 10.46 - 10.48 Mb | Chr 9: 20.98 - 20.99 Mb | ||||||||||||
Pubmed search | [1] | [2] |
Kelch-like ECH-associated protein 1, also known as KEAP1, is a human gene.[1]
This gene encodes a protein containing KELCH-1 like domains, as well as a BTB/POZ domain. Kelch-like ECH-associated protein 1 interacts with NF-E2-related factor 2 in a redox-sensitive manner and the dissociation of the proteins in the cytoplasm is followed by transportation of NF-E2-related factor 2 to the nucleus. This interaction results in the expression of the catalytic subunit of gamma-glutamylcysteine synthetase. Two alternatively spliced transcript variants encoding the same isoform have been found for this gene.[1]
[edit] References
[edit] Further reading
- Zhang DD (2007). "Mechanistic studies of the Nrf2-Keap1 signaling pathway.". Drug Metab. Rev. 38 (4): 769–89. doi: . PMID 17145701.
- Nagase T, Seki N, Tanaka A, et al. (1996). "Prediction of the coding sequences of unidentified human genes. IV. The coding sequences of 40 new genes (KIAA0121-KIAA0160) deduced by analysis of cDNA clones from human cell line KG-1.". DNA Res. 2 (4): 167–74, 199–210. PMID 8590280.
- Itoh K, Wakabayashi N, Katoh Y, et al. (1999). "Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain.". Genes Dev. 13 (1): 76–86. PMID 9887101.
- Dhakshinamoorthy S, Jaiswal AK (2001). "Functional characterization and role of INrf2 in antioxidant response element-mediated expression and antioxidant induction of NAD(P)H:quinone oxidoreductase1 gene.". Oncogene 20 (29): 3906–17. doi: . PMID 11439354.
- Sekhar KR, Spitz DR, Harris S, et al. (2002). "Redox-sensitive interaction between KIAA0132 and Nrf2 mediates indomethacin-induced expression of gamma-glutamylcysteine synthetase.". Free Radic. Biol. Med. 32 (7): 650–62. PMID 11909699.
- Velichkova M, Guttman J, Warren C, et al. (2002). "A human homologue of Drosophila kelch associates with myosin-VIIa in specialized adhesion junctions.". Cell Motil. Cytoskeleton 51 (3): 147–64. doi: . PMID 11921171.
- Zipper LM, Mulcahy RT (2002). "The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm.". J. Biol. Chem. 277 (39): 36544–52. doi: . PMID 12145307.
- Sekhar KR, Yan XX, Freeman ML (2002). "Nrf2 degradation by the ubiquitin proteasome pathway is inhibited by KIAA0132, the human homolog to INrf2.". Oncogene 21 (44): 6829–34. doi: . PMID 12360409.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi: . PMID 12477932.
- Bloom DA, Jaiswal AK (2004). "Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression.". J. Biol. Chem. 278 (45): 44675–82. doi: . PMID 12947090.
- Cullinan SB, Zhang D, Hannink M, et al. (2003). "Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival.". Mol. Cell. Biol. 23 (20): 7198–209. PMID 14517290.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs.". Nat. Genet. 36 (1): 40–5. doi: . PMID 14702039.
- Colland F, Jacq X, Trouplin V, et al. (2004). "Functional proteomics mapping of a human signaling pathway.". Genome Res. 14 (7): 1324–32. doi: . PMID 15231748.
- Kobayashi A, Kang MI, Okawa H, et al. (2004). "Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2.". Mol. Cell. Biol. 24 (16): 7130–9. doi: . PMID 15282312.
- Strachan GD, Morgan KL, Otis LL, et al. (2004). "Fetal Alz-50 clone 1 interacts with the human orthologue of the Kelch-like Ech-associated protein.". Biochemistry 43 (38): 12113–22. doi: . PMID 15379550.
- Li X, Zhang D, Hannink M, Beamer LJ (2005). "Crystal structure of the Kelch domain of human Keap1.". J. Biol. Chem. 279 (52): 54750–8. doi: . PMID 15475350.
- Zhang DD, Lo SC, Cross JV, et al. (2004). "Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex.". Mol. Cell. Biol. 24 (24): 10941–53. doi: . PMID 15572695.
- Li X, Zhang D, Hannink M, Beamer LJ (2005). "Crystallization and initial crystallographic analysis of the Kelch domain from human Keap1.". Acta Crystallogr. D Biol. Crystallogr. 60 (Pt 12 Pt 2): 2346–8. doi: . PMID 15583386.
- Furukawa M, Xiong Y (2005). "BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase.". Mol. Cell. Biol. 25 (1): 162–71. doi: . PMID 15601839.
- Hosoya T, Maruyama A, Kang MI, et al. (2005). "Differential responses of the Nrf2-Keap1 system to laminar and oscillatory shear stresses in endothelial cells.". J. Biol. Chem. 280 (29): 27244–50. doi: . PMID 15917255.