User:Karlhahn/oldSand

From Wikipedia, the free encyclopedia

Material that has been retired from my main sandbox



[edit] Castner-Kellner process

The Castner-Kellner process is a method of electrolysis on an aqueous alkali chloride solution (usually sodium chloride solution) to produce the corresponding alkali hydroxide.

[edit] Process details

Castner-Kellner aparatus
Castner-Kellner aparatus

The aparatus shown is divided into two types of cells separated by slate walls. The first type, shown on the right and left of the diagram, uses an electrolyte of of sodium chloride solution, a graphite anode (A), and a mercury cathode (M). The other type of cell, shown in the center of the diagram, uses an electrolyte of sodium hydroxide solution, a mercury anode (M), and an iron cathode (D). Note that the mercury electrode is shared between the two cells. This is achieved by having the walls separating the cells dip below the level of the electrolytes but still allow the mercury to flow beneath them.

The reaction at anode (A) is:

2Cl → Cl2 + 2e

The chlorine gas that results vents at the top of the outside cells where it is collected as a byproduct of the process. The reaction at the mercury cathode in the outer cells is

2Na+ + 2e → 2Na (amalgam)

The sodium metal formed by this reaction dissolves in the mercury to form an amalgam. The mercury conducts the current from the outside cells to the inside cell. In addition, a rocking mechanism (B shown by fulcrum on the left and rotating eccentric on the right) agitates the mercury to transport the dissolved sodium metal from the outside cells to the inside cell.

The anode reaction in the center cell takes place at the interface between the mercury and the sodium hydroxide solution.

2Na + 2e → 2Na+

Finally at the iron cathode (D) of the center cell the reaction is

2H2O + 2e → 2OH + H2

The net effect is that the concentration of sodium chloride in the outside cells decreases and the concentration of sodium hydroxide in the center cell increases.


[edit] Extraction of Copper from its Ores

Name Formula  % Copper
when pure
Chalcopyrite CuFeS2 34.5
Chalcocite CuS 79.8
Bornite 2Cu2S•CuS•FeS 63.3
Tetrahedrite Cu3SbS3 + x(Fe,Zn)6Sb2S9 32-45
Malachite CuCO3•Cu(OH)2 57.3
Azurite 2CuCO3•Cu(OH)2 55.1
Cuprite Cu2O 88.8
Chrysocolla CuO•SiO2•2H2O 37.9

Principal Copper-bearing Minerals[1]

Most copper ores contain one or more of the copper-bearing minerals shown in the table. Ores containing as little as 1% copper can be economically exploited. Ores are crushed then concentrated a combination of gravity separation and froth floatation. The resulting concentrate is about 30% copper, having extracted 90% of the copper in the original ore.

Most copper ores contain large amounts of sulfides. These ores are roasted prior to smelting. The smelting is done by reverberatory furnace, although blast furnaces were used in the past. At around 1500°C the charge separates into layers of slag (silicates) and matte (sulfides). This also has the effect of separating much of the iron content of the ore because copper preferentially collects in the matte layer while iron preferentially collects in the slag.

Copper mattes from the reverberatory furnace are then separated from the remaining iron and converted to metal by heating them in an air blow, which effects the following reactions:

2FeS + 3O2 → 2FeO + 2SO2
2Cu2S + 3O2 → 2Cu2O + 2SO2
Cu2S + 2Cu2O → 6Cu + SO2

The addition of silica absorbs the FeO into a silicate slag layer. The remaining metal layer is poured off and cast as impure blister copper. Impurities are primarily arsenic, antimony, bismuth, and precious metals. To obtain copper pure enough for electrical products, the blister copper must be electrolytically refined. Anodes are cast from blister copper. Cathodes are made of thin rolled sheets of pure copper. The electrolyte is a 10-16% aqueous sulfuric acid solution with 3-4% dissoved copper(II) ions. The cell requires only a 0.2-0.4 volt potential. At the anode, copper and less noble metals dissolve. More noble metals such as silver and gold settle to the bottom of the cell as anode mud, which form a saleable byproduct. At the cathode, copper metal plates out but less noble metals remain in solution. The process results in copper that is 99.9% pure.[1]


[edit] Chlorine Compounds

Oxidation
state
Name Forumula Example compounds
–1 chlorides Cl ionic chlorides, organic chlorides, hydrochloric acid
0 chlorine Cl2 elemental chlorine
+1 hypochlorites ClO sodium and calcium hypochlorite
+3 chlorites ClO2 sodium chlorite
+5 chlorates ClO3 sodium chlorate, potassium chlorate
+7 perchlorates ClO4 potassium perchlorate, perchloric acid, organic perchlorates, ammonium perchlorate, magnesium perchlorate

Chlorine exists in all odd numbered oxidation states from –1 to +7, as well as the elemental state of zero. Progressing through the states, hydrogen chloride gas can be oxidized using manganese dioxide or catalytically by air to elemental chlorine gas. The solubility of chlorine in water is increased if the water contains dissolved alkali hydroxide. This is due to disproportionation:

Cl2 + 2OH → Cl + ClO + H2O

In hot concentrated alkali solution disproportionation continues:

2ClO → Cl + ClO2
ClO + ClO2 → Cl + ClO3

Potassium chlorate can be crystalized from solutions formed by the above reactions. If its crystals are heated, it undergoes the final disproportionation step.

ClO + ClO3 → Cl + ClO4

This same progression from chloride to perchlorate can be accomplished by electrolysis. The anode reaction progression is:

Cl + H2O → ClO + 2H+ + 2e
ClO + H2O → ClO2 + 2H+ + 2e
ClO2 + H2O → ClO3 + 2H+ + 2e
ClO3 + H2O → ClO4 + 2H+ + 2e

Each step is accompanied at the cathode by

2H+ + 2e → H2




[edit] Ethanol Chemistry

Chemical formula of ethanol, (C is carbon, the dash is a single bond, H is hydrogen, O is oxygen)
Chemical formula of ethanol, (C is carbon, the dash is a single bond, H is hydrogen, O is oxygen)

The chemistry of ethanol is largely that of its hydroxyl group.

Acid-base chemistry

Ethanol's hydroxyl proton is weakly acidic, having a pKa of only 15.9, compared to water's 15.7[2] (Ka of ethanol is a measure of \scriptstyle \frac {[C_2H_5O^-][H^+]} {[C_2H_5OH]}. Note that Ka of water is derived by dividing water's dissociation constant, \scriptstyle [H^+][OH^-] = 1.0 \times 10^{-14} moles²/liter, by its molar density of 55.5 moles/liter). Ethanol can be quantitatively converted to its conjugate base, the ethoxide ion (CH3CH2O), by reaction with an alkali metal such as sodium. This reaction evolves hydrogen gas:

2CH3CH2OH + 2Na → 2CH3CH2ONa + H2
Nucleophilic substitution

In aprotic solvents, ethanol reacts with hydrogen halides to produce ethyl halides such as ethyl chloride and ethyl bromide via nucleophilic substitution:

CH3CH2OH + HClCH3CH2Cl + H2O
CH3CH2OH + HBrCH3CH2Br + H2O

Ethyl halides can also be produced by reacting ethanol by more specialized halogenating agents, such as thionyl chloride for preparing ethyl chloride, or phosphorus tribromide for preparing ethyl bromide.

Esterification

Under acid-catalysed conditions, ethanol reacts with carboxylic acids to produce ethyl esters and water:

RCOOH + HOCH2CH3RCOOCH2CH3 + H2O

The reverse reaction, hydrolysis of the resulting ester back to ethanol and the carboxylic acid, limits the extent of reaction, and high yields are unusual unless water can be removed from the reaction mixture as it is formed. Esterification can also be carried out using more a reactive derivative of the carboxylic acid, such as an acyl chloride or acid anhydride. A very common ester of ethanol is ethyl acetate, found in nailpolish remover.

Ethanol can also form esters with inorganic acids. Diethyl sulfate and triethyl phosphate, prepared by reacting ethanol with sulfuric and phosphoric acid, respectively, are both useful ethylating agents in organic synthesis. Ethyl nitrite, prepared from the reaction of ethanol with sodium nitrite and sulfuric acid, was formerly a widely-used diuretic.

Dehydration

Strong acids, such as sulfuric acid, can catalyse ethanol's dehydration to form either diethyl ether or ethylene:

2 CH3CH2OH → CH3CH2OCH2CH3 + H2O
CH3CH2OH → H2C=CH2 + H2O

Although sulfuric acid catalyses this reaction, the acid is diluted by the water that is formed, which makes the reaction inefficient. Which product, diethyl ether or ethylene, predominates depends on the precise reaction conditions.

Oxidation

Ethanol can be oxidized to acetaldehyde, and further oxidized to acetic acid. In the human body, these oxidation reactions are catalysed by enzymes. In the laboratory, aqueous solutions of strong oxidizing agents, such as chromic acid or potassium permanganate, oxidize ethanol to acetic acid, and it is difficult to stop the reaction at acetaldehyde at high yield. Ethanol can be oxidized to acetaldehyde, without overoxidation to acetic acid, by reacting it with pyridinium chromic chloride.

Combustion
Ethanol combusting in the confines of an evaporating dish
Ethanol combusting in the confines of an evaporating dish

Combustion of ethanol forms carbon dioxide and water:

C2H5OH + 3 O2 → 2 CO2 + 3 H2O

for Carbon dioxide (data page)

[edit] Liquid/vapor equilibrium thermodynamic data

The table below gives thermodynamic data of liquid CO2 in equilibrium with its vapor at various temperatures. Heat content data, heat of vaporization, and entropy values are relative to the liquid state at 0°C temperature and 3483 kPa pressure. To convert heat values to molar values, multiply by 44.095 grams/mole. To convert densities to liters/mole, multiply by 22.678 liter-grams/cm3-mole. Data obtained from CRC Handbook of Chemistry and Physics, 44th ed. pages 2560-2561, except for critical temperature line (31.1°C) and temperatures –30°C and below, which are taken from Lange's Handbook of Chemistry, 10th ed. page 1463.

Carbon dioxide liquid/vapor equilibrium thermodynamic data
Temp.
°C
Pvap
Vapor
pressure
kPa
Hliq
Heat
content
liquid
J/gr
Hvap
Heat
content
vapor
J/gr
ΔvapHo
Heat of
vapor-
ization
J/gr
ρvap
Density
of vapor
gr/cm3
ρliq
Density
of liquid
gr/cm3
Sliq
Entropy
liquid
J/mol-°C
Svap
Entropy
vapor
J/mol-°C
–56.6 518.3 1.179
–56.0 531.8 1.177
–54.0 579.1 1.169
–52.0 629.6 1.162
–50.0 683.4 1.155
–48.0 740.6 1.147
–46.0 801.3 1.139
–44.0 865.6 1.131
–42.0 933.8 1.124
–40.0 1005.7 1.116
–38.0 1081.6 1.108
–36.0 1161.8 1.100
–34.0 1246.2 1.092
–32.0 1335.1 1.084
-30.0 1428.6 1.075
–28.89 1521 –55.69 237.1 292.9 0.03846 1.0306 –9.48 43.41
–27.78 1575 –53.76 237.3 291.0 0.03987 1.0276 –9.13 43.21
–26.67 1630 –51.84 237.6 289.4 0.04133 1.0242 –8.78 43.01
–25.56 1686 –49.87 237.6 287.5 0.04283 1.0209 –8.45 42.78
–24.44 1744 –47.91 237.8 285.7 0.04440 1.0170 –8.10 42.56
–23.33 1804 –45.94 237.8 283.6 0.04600 1.0132 –7.75 42.36
–22.22 1866 –43.93 237.8 281.7 0.04767 1.0093 –7.40 42.14
–21.11 1928 –41.92 237.8 279.6 0.04938 1.0053 –7.05 42.94
–20.00 1993 –39.91 237.8 277.8 0.05116 1.0011 –6.68 41.71
–18.89 2059 –37.86 237.8 275.7 0.05300 0.9968 –6.31 41.49
–17.78 2114 –35.82 237.6 273.6 0.05489 0.9923 –5.98 41.27
–16.67 2197 –33.73 237.6 271.2 0.05686 0.9875 –5.61 41.05
–15.56 2269 –31.64 237.3 269.2 0.05888 0.9829 –5.26 40.83
–14.44 2343 –29.54 237.3 266.9 0.06098 0.9782 –4.91 40.61
–13.33 2418 –27.41 237.1 264.5 0.06314 0.9734 –4.54 40.39
–12.22 2495 –25.27 236.9 262.2 0.06539 0.9665 –4.17 40.15
–11.11 2574 –23.09 236.7 259.7 0.06771 0.9639 –3.80 39.92
–10.00 2654 –20.90 236.4 257.3 0.07011 0.9592 –3.43 39.68
–8.89 2738 –18.69 235.9 254.8 0.07259 0.9543 –3.06 39.46
–7.78 2823 –16.45 235.7 252.2 0.07516 0.9494 –2.69 39.22
–6.67 2910 –14.18 235.2 249.4 0.07783 0.9443 –2.32 38.98
–5.56 2999 –11.90 234.8 246.6 0.08059 0.9393 –1.94 38.74
–4.44 3090 –9.977 234.3 243.8 0.08347 0.9340 –1.57 38.50
–3.89 3136 –8.410 234.1 242.4 0.08494 0.9313 –1.37 38.37
–2.78 3230 –6.046 233.6 239.7 0.08797 0.9260 –0.98 38.12
–1.67 3327 –3.648 232.9 236.6 0.09111 0.9206 –0.59 37.88
–0.56 3425 –1.222 232.4 233.6 0.09438 0.9150 –0.20 37.62
0.56 3526 1.234 231.7 230.5 0.09776 0.9094 0.20 37.36
1.67 3629 3.728 231.0 227.3 0.1013 0.9036 0.61 37.08
2.78 3735 6.268 230.4 224.0 0.1050 0.8975 1.01 36.83
3.89 3981 8.445 229.4 220.5 0.1088 0.8914 1.42 36.55
5.00 3953 11.46 228.5 217.0 0.1128 0.8850 1.83 36.25
6.11 4067 14.13 227.6 213.4 0.1169 0.8784 2.25 35.98
7.22 4182 16.85 226.5 209.7 0.1213 0.8716 2.69 35.68
8.33 4300 19.63 225.4 205.8 0.1258 0.8645 3.12 35.39
9.44 4420 22.46 224.3 201.8 0.1306 0.8571 3.56 35.07
10.56 4544 25.36 223.1 197.7 0.1355 0.8496 4.02 34.76
11.67 4670 28.33 221.8 193.4 0.1408 0.8418 4.48 34.45
12.78 4798 31.35 220.3 188.9 0.1463 0.8338 4.94 34.11
13.89 4929 34.49 218.8 184.3 0.1521 0.8254 5.42 33.76
15.00 5063 37.30 217.2 179.5 0.1583 0.8168 5.92 33.41
16.11 5200 41.03 215.1 174.4 0.1648 0.8076 6.42 33.02
17.22 5340 44.48 213.6 169.1 0.1717 0.7977 6.96 32.66
18.33 5482 48.03 211.5 163.5 0.1791 0.7871 7.49 32.25
19.44 5628 51.71 209.4 157.6 0.1869 0.7759 8.04 31.83
20.56 5776 55.61 207.0 151.4 0.1956 0.7639 8.63 31.38
21.67 5928 59.66 204.3 144.7 0.2054 0.7508 9.24 30.90
22.78 6083 63.97 201.5 137.5 0.2151 0.7367 9.89 30.39
23.89 6240 68.58 198.4 129.8 0.2263 0.7216 10.57 29.85
25.00 6401 73.51 194.8 121.3 0.2387 0.7058 11.31 29.24
26.11 6565 78.91 190.7 111.8 0.2532 0.6894 12.10 28.60
27.22 6733 84.94 186.0 101.1 0.2707 0.6720 12.99 27.84
28.33 6902 91.88 180.4 88.49 0.2923 0.6507 14.00 26.95
29.44 7081 100.4 173.1 72.72 0.3204 0.6209 15.24 25.85
30.00 7164 105.6 168.4 62.76 0.3378 0.5992 16.01 25.15
30.56 7253 112.3 162.3 50.04 0.3581 0.5661 16.99 24.24
31.1 7391 0.00 0.4641 0.4641
Temp.
°C
Pvap
Vapor
pressure
kPa
Hliq
Heat
content
liquid
J/gr
Hvap
Heat
content
vapor
J/gr
ΔvapHo
Heat of
vapor-
ization
J/gr
ρvap
Density
of vapor
gr/cm3
ρliq
Density
of liquid
gr/cm3
Sliq
Entropy
liquid
J/mol-°C
Svap
Entropy
vapor
J/mol-°C


from [Surface tension]]

[edit] Water Strider Physics

The photograph shows water striders standing on the surface of a pond. It is clearly visible that their feet cause indentations in the water's surface. It is intuitively evident that the surface with indentations has more surface area than a flat surface. If surface tension tends to minimize surface area, how is it that the water striders are increasing the surface area?

Recall that what nature really tries to minimize is potential energy. By increasing the surface area of the water, the water striders have increased the potential energy of that surface. But note also that the water striders' center of mass is lower than it would be if they were standing on a flat surface. So their potential energy is decreased. Indeed when you combine the two effects, the net potential energy is minimized. If the water striders depressed the surface any more, the increased surface energy would more than cancel the reduction in the decreased energy of lowering the insects' center of mass. If they depressed the surface any less, their higher center of mass would more than cancel the reduction in surface energy.

The photo of the water striders also illustrates the notion of surface tension being like having an elastic film over the surface of the liquid. In the surface depressions at their feet it is easy to see that the reaction of that imagined elastic film is exactly countering the weight of the insects.

[edit] Liquid in a Cylindrical Tube

Diagram of a Mercury Barometer
Diagram of a Mercury Barometer

An old style mercury barometer consists of a vertical glass tube about 1 cm in diameter partially filled with mercury, and with a vacuum in the unfilled volume (see diagram to the left). Notice that the mercury level at the center of the tube is higher than at the at the edges, making the upper surface of the mercury dome-shaped. The center of mass of the entire column of mercury would be slightly lower if the top surface of the mercury were flat over the entire crossection of the tube. But the dome-shaped top gives slightly less surface area to the entire mass of mercury. Again the two effects combine to minimize the total potential energy. Such a surface shape is known as a convex meniscus.

The reason we consider the surface area of the entire mass of mercury, including the part of the surface that is in contact with the glass is because mercury does not adhere at all to glass. So the surface tension of the mercury acts over its entire surface area, including where it is in contact with the glass. If instead of glass, the tube were made out of copper, the situation would be very different. Mercury aggressively adheres to copper. So in a copper tube, the level of mercury at the center of the tube will be lower rather than higher than at the edges (that is, it would be a concave meniscus). In a situation where the liquid adheres to the walls of its container, we consider the part of the fluid's surface area that is in contact with the container to have negative surface tension. The fluid then works to maximize the contact surface area. So in this case increasing the area in contact with the container decreases rather than increases the potential energy. That decrease is enough compensate for the increase potential energy associated with the lifting of the fluid near the walls of the container.

[edit] Pool of Liquid on a Nonadhesive Surface

Pouring mercury onto a horizontal flat sheet of glass results in a puddle that has a perceptible thickness (do not try this except under a fume hood. Mercury vapor is a toxic hazard). The puddle will only spread out only to the point where it is a little under a centimeter thick, and no thinner. Again this is the action of mercury's strong surface tension. The liquid mass flattens out because that brings as much of the mercury to as low a level as possible. But the surface tension, at the same time, is acting to reduce the total surface area. The result is the compromise of a puddle of a nearly fixed thickness.

The same surface tension demonstration can be done with water, but only on a surface made of a substance that the water does not adhere to. Candle wax is such a substance. Water poured onto a smooth, flat, horizontal wax surface will behave similarly to the mercury poured onto glass.


end of surface tension material

[edit] Descriptive chemistry (lead)

Various oxidized forms of lead are easily reduced to the metal. An example is heating PbO with mild organic reducing agents such as glucose. A mixuture of the oxide and the sulfide heated together without any reducing agent will also form the metal.[3]

2PbO + PbS   →   3 Pb + SO2

Metallic lead is attacked only superficially by air, forming a thin layer of oxide that protects it from further oxidation. The metal is not attacked by sulfuric or hydrochloric acids. It does, however, dissovle in nitric acid with the evolution of nitric oxide gas to form dissolved Pb(NO3)2.

3 Pb + 8 H+ + 8 NO3   →   3 Pb2+ + 6 NO3 + 2 NO + 4H2O

When heated with nitrates of alkali metals, metallic lead oxidizes to form PbO (also known as litharge), leaving the corresponding alkali nitrite. PbO is representative of lead's II oxidation state. It is soluble in nitric and acetic acids, from which solutions it is possible to preciptate halide, sulfate, and basic carbonate salts of lead. The sulfide can also be precipitated from acetate solutions. These salts are all poorly soluble in water. Among the halides, the iodide is less soluble than the bromide, which, in turn, is less soluble than the chloride.[4]

The II oxide is also soluble in alkali hydroxide solutions to form the corresponding plumbite salt.[3]

PbO + 2OH + H2O   →   Pb(OH)42–

Chlorination of plumbite solutions causes the formation of lead's IV oxidation state. Lead dioxide is representative of the IV state, and is a powerful oxidizing agent. The chloride of this oxidation state is formed only with difficulty and decomposes readily into the II chloride and chlorine gas. The bromide and iodide of IV lead are not known to exist.[4] Lead dioxide dissolves in alkali hydroxide solutions to form the corresponding plumbates.[3]

PbO2 + 2 OH + 2 H2O   →   Pb(OH)62–


[edit] Rewrite Project

for calcium carbonate water solubility section:

[edit] Original version

Calcium carbonate is not rigorously insoluble in water. For the following equilibrium reaction

  • CaC03(solid) ↔ Ca2+ + CO32−, we take a solubility product \scriptstyle K_{sp}=[Ca^{2+}][CO_3^{2-}]=4.47\times 10^{-9} at 25°C (Ksp=3.8 x 10−9 is given in [5]

Considering a saturated pure CaCO3 solution, the calculation of the Ca2+ concentration must take into account the equilibria between the three different carbonate forms (H2CO3, HCO3 and CO32−) as well as the equilibrium between H2CO3 and the dissolved CO2 and the equilibrium between the dissolved CO2 and the gaseous CO2 above the solution. The reactions involved are the following (see carbonic acid):

  • CO2(gas) ↔ CO2(dissolved) with \scriptstyle \frac{[CO_2]}{p_{CO_2}}=\frac{1}{k'_c} where k'c=29.76 atm/(mol/L) at 25°C (Henry constant), \scriptstyle p_{CO_2} being the CO2 partial pressure.
  • CO2(dissolved) + H2O ↔ H2CO3 with \scriptstyle K_h=\frac{[H_2CO_3]}{[CO_2]}=1.70 \times 10^{-3} at 25°C
  • H2CO3 ↔ H+ + HCO3 with \scriptstyle K_{a1}=\frac{[H^+][HCO_3^-]}{[H_2CO_3]}=2.5 \times 10^{-4} at 25°C
  • HCO3 ↔ H+ + CO32− with \scriptstyle K_{a2}=\frac{[H^+][CO_3^{2-}]}{[HCO_3^-]}=5.61 \times 10^{-11} at 25°C

The above relations (together with the \scriptstyle[H^+][OH^-]=10^{-14} relation and the neutrality condition \scriptstyle2[Ca^{2+}]+[H^+]=[HCO_3^-]+2[CO_3^{2-}]+[OH^-], i.e. 7 equations for 7 unknowns) allow the numerical calculation of the pH and of the Ca2+ concentration as a function of \scriptstyle p_{CO_2}. The result is given in the table below:

\scriptstyle p_{CO_2} (atm) pH [Ca2+] (mol/L)
10−12 12.0 5.19 x 10−3
10−10 11.3 1.12 x 10−3
10−8 10.7 2.55 x 10−4
10−6 9.83 1.20 x 10−4
10−4 8.62 3.16 x 10−4
3.5 x 10−4 8.27 4.70 x 10−4
10−3 7.96 6.62 x 10−4
10−2 7.30 1.42 x 10−3
10−1 6.63 3.05 x 10−3
1 5.96 6.58 x 10−3
10 5.30 1.42 x 10−2

We see that for normal atmospheric conditions (\scriptstyle p_{CO_2}=3.5\times 10^{-4} atm), we get a slightly basic solution (pH = 8.3) with a low Ca2+ concentration (4.7 x 10−4 mol/L i.e. 0.019 g/L of Ca). Increasing the CO2 pressure makes the solution slightly acid with a better Ca solubility (0.57 g/L of Ca at 10 atm). For decreasing CO2 pressure values, the solubility goes to a minimum for \scriptstyle p_{CO_2}= 10^{-6} atm and then increases again as the solution gets strongly basic.

Remark: For \scriptstyle p_{CO_2} > 10−4 atm, CO32−, H+ and OH concentrations can be neglected in the neutrality condition. This means physically that we have essentially a calcium bicarbonate solution. In this case, the system can be solved analytically, giving (with a very good precision)

\scriptstyle[H^+] \simeq \left(\frac{K_{a1}^2K_{a2}K_h^2}{2K_{sp}k_c^{\prime 2}}\right)^{1/3}p_{CO_2}^{2/3}\;\;\;,\;\;\;[Ca^{2+}] \simeq \left(\frac{K_{a1}K_{sp}K_h}{4K_{a2}k_c^\prime}\right)^{1/3}p_{CO_2}^{1/3}

[edit] Current state of rewritten version

Calcium carbonate is poorly soluble in water. The equilibrium of its solution is given by the equation (with dissolved calcium carbonate on the right):

CaCO3 ⇋ Ca2+ + CO32– Ksp = 3.7×10–9 to 8.7×10–9 at 25 °C

where the solubility product for [Ca2+][CO32–] is given as anywhere from Ksp = 3.7×10–9 to Ksp = 8.7×10–9 at 25 °C, depending upon the data source.[6][7] What the equation means is that the product of number of moles of dissolved Ca2+ with the number of moles of dissolved CO32– cannot exceed the value of Ksp. This seemingly simple solubility equation, however, must be taken along with the more complicated equilibrium of carbon dioxide with water. Some of the CO32– combines with H+ in the solution according to:

HCO3 ⇋ H+ + CO32–    Ka2 = 5.61×10–11 at 25 °C

HCO3 is known as the bicarbonate ion. Calcium bicarbonate is many times more soluble in water than calcium carbonate -- indeed it exists only in solution.

Some of the HCO3 combines with H+ in solution according to:

H2CO3 ⇋ H+ + HCO3    Ka1 = 2.5×10–4 at 25 °C

Some of the H2CO3 breaks up into water and dissolved carbon dioxide according to:

H2O + CO2(dissolved) ⇋ H2CO3    Kh = 1.70×10–3 at 25 °C

And dissolved carbon dioxide is in equilibrium with atmospheric carbon dioxide according to:

\frac{P_{\mathrm{CO}_2}}{[\mathrm{CO}_2]}\ =\ k'_c where k'c = 29.76 atm/(mol/L) at 25°C (Henry constant), \scriptstyle P_{\mathrm{CO}_2} being the CO2 partial pressure.
Calcium Ion Solubility
as a function of CO2 partial pressure
\scriptstyle P_{\mathrm{CO}_2} (atm) pH [Ca2+] (mol/L)
10−12 12.0 5.19 × 10−3
10−10 11.3 1.12 × 10−3
10−8 10.7 2.55 × 10−4
10−6 9.83 1.20 × 10−4
10−4 8.62 3.16 × 10−4
3.5 × 10−4 8.27 4.70 × 10−4
10−3 7.96 6.62 × 10−4
10−2 7.30 1.42 × 10−3
10−1 6.63 3.05 × 10−3
1 5.96 6.58 × 10−3
10 5.30 1.42 × 10−2

For ambient air, \scriptstyle P_{\mathrm{CO}_2} is around 3.5×10–4 atmospheres (or equivalently 35 Pa). The last equation above fixes the concentration of dissolved CO2 as a function of \scriptstyle P_{\mathrm{CO}_2}, independent of the concentration of dissolved CaCO3. At atmospheric partial pressure of CO2, dissolved CO2 concentration is 1.2×10–5 moles/liter. The equation before that fixes the concentration of H2CO3 as a function of [CO2]. For [CO2]=1.2×10–5, it results in [H2CO3]=2.0×10–8 moles per liter. When [H2CO3] is known, the remaining three equations together with

H2O ⇋ H+ + OH K = 10–14 at 25 °C

(which is true for all aqueous solutions), and the fact that the solution must be electrically neutral,

2[Ca2+] + [H+] = [HCO3] + 2[CO32–] + [OH]

make it possible to solve simultaneously for the remaining five unknown concentrations. The table on the right shows the solution for [Ca2+] and [H+] (in the form of pH) as a function of ambient partial pressure of CO2. At atmopheric levels of ambient CO2 the table indicates the solution will be slightly alkaline. The trends the table shows are

1) As ambient CO2 partial pressure is reduced below atmospheric levels, the solution becomes more and more alkaline. At extremly low \scriptstyle P_{\mathrm{CO}_2}, dissolved CO2, bicarbonate ion, and carbonate ion largely evaporate from the solution, leaving a highly alkaline solution of calcium hydroxide, which is more soluble than CaCO3.
2) As ambient CO2 partial pressure increases to levels above atmospheric, pH drops, and much of the carbonate ion is converted to bicarbonate ion, which results in higher solubility of Ca2+.

The effect of the latter is especially evident in day to day life of people who have hard water. Water in aquifers underground can be exposed to levels of CO2 much higher than atmospheric. As such water perculates through calcium carbonate rock, the CaCO3 dissolves according to the second trend. When that same water then water emerges from the tap, in time it comes into equilibrium with CO2 levels in the air by outgassing its excess CO2. The calcium carbonate becomes less soluble as a result and the excess precipitates as lime scale. This same process is responsible for the formation of stalactites and stalagmites in limestone caves.


[edit] Liquid/Vapor Equilibrium Data

Vapor over Anhydrous Ammonia
Temp. Pressure ρ of liquid ρ of vapor ΔvapH
–78 °C 5.90 kPa
–75 °C 7.93 kPa 0.73094 g/cm3 7.8241×10–5 g/cm3
–70 °C 10.92 kPa 0.72527 g/cm3 1.1141×10–4 g/cm3
–65 °C 15.61 kPa 0.71953 g/cm3 1.5552×10–4 g/cm3
–60 °C 21.90 kPa 0.71378 g/cm3 2.1321×10–4 g/cm3
–55 °C 30.16 kPa 0.70791 g/cm3 2.8596×10–4 g/cm3
–50 °C 40.87 kPa 0.70200 g/cm3 3.8158×10–4 g/cm3 1417 J/g
–45 °C 54.54 kPa 0.69604 g/cm3 4.9940×10–4 g/cm3 1404 J/g
–40 °C 71.77 kPa 0.68999 g/cm3 6.4508×10–4 g/cm3 1390 J/g
–35 °C 93.19 kPa 0.68385 g/cm3 8.2318×10–4 g/cm3 1375 J/g
–30 °C 119.6 kPa 0.67764 g/cm3 1.0386×10–3 g/cm3 1361 J/g
–25 °C 151.6 kPa 0.67137 g/cm3 1.2969×10–3 g/cm3 1345 J/g
–20 °C 190.2 kPa 0.66503 g/cm3 1.6039×10–3 g/cm3 1330 J/g
–15 °C 236.3 kPa 0.65854 g/cm3 1.9659×10–3 g/cm3 1314 J/g
–10 °C 290.8 kPa 0.65198 g/cm3 2.3874×10–3 g/cm3 1297 J/g
–5 °C 354.8 kPa 0.64533 g/cm3 2.8827×10–3 g/cm3 1280 J/g
 0 °C 429.4 kPa 0.63857 g/cm3 3.4528×10–3 g/cm3 1263 J/g
 5 °C 515.7 kPa 0.63167 g/cm3 4.1086×10–3 g/cm3 1245 J/g
 10 °C 614.9 kPa 0.62469 g/cm3 4.8593×10–3 g/cm3 1226 J/g
 15 °C 728.3 kPa 0.61755 g/cm3 5.7153×10–3 g/cm3 1207 J/g
 20 °C 857.1 kPa 0.61028 g/cm3 6.6876×10–3 g/cm3 1187 J/g
 25 °C 1003 kPa 0.60285 g/cm3 7.7882×10–3 g/cm3 1167 J/g
 30 °C 1166 kPa 0.59524 g/cm3 9.0310×10–3 g/cm3 1146 J/g
 35 °C 1350 kPa 0.58816 g/cm3 1.0431×10–2 g/cm3 1124 J/g
 40 °C 1554 kPa 0.57948 g/cm3 1.2006×10–2 g/cm3 1101 J/g
 45 °C 1781 kPa 0.57130 g/cm3 1.3775×10–2 g/cm3 1083 J/g
 50 °C 2032 kPa 0.56287 g/cm3 1.5761×10–2 g/cm3 1052 J/g
 55 °C 2310 kPa 0.55420 g/cm3
 60 °C 2613 kPa 0.54523 g/cm3 2.05×10–2 g/cm3
 65 °C 2947 kPa 0.53596 g/cm3
 70 °C 3312 kPa 0.52632 g/cm3 2.65×10–2 g/cm3
 75 °C 3711 kPa 0.51626 g/cm3
 80 °C 4144 kPa 0.50571 g/cm3 3.41×10–2 g/cm3
 85 °C 4614 kPa 0.49463 g/cm3
 90 °C 5123 kPa 0.48290 g/cm3 4.39×10–2 g/cm3
 95 °C 5672 kPa 0.47041 g/cm3
100 °C 6264 kPa 0.45693 g/cm3 5.68×10–2 g/cm3


The table above gives properties of the vapor/liquid equilibrium of anhydrous ammonia at various temperatures. The second column is vapor pressure in kPa. The third column is the density of the liquid phase. The fourth column is the density of the vapor. The fifth column is the heat of vaporization needed to convert one gram of liquid to vapor.

[edit] Equilibrium of vapor over aqueous solution

Vapor over Aqueous Ammonia Solution[8]
Temp.  %wt NH3 Partial Pressure
NH3
Partial Pressure
H2O
0 °C 4.72 1.52 kPa 0.68 kPa
9.15 3.31 kPa 0.71 kPa
14.73 6.84 kPa 0.55 kPa
19.62 11.0 kPa 0.40 kPa
22.90 14.9 kPa 0.37 kPa
10 °C 4.16 2.20 kPa 1.21 kPa
8.26 4.96 kPa 1.17 kPa
12.32 8.56 kPa 1.01 kPa
15.88 12.68 kPa 0.93 kPa
20.54 19.89 kPa 0.83 kPa
21.83 22.64 kPa 0.73 kPa
19.9 °C 4.18 3.65 kPa 2.19 kPa
6.50 6.11 kPa 2.15 kPa
6.55 6.13 kPa 2.13 kPa
7.72 7.49 kPa 2.08 kPa
10.15 10.75 kPa 2.01 kPa
10.75 11.51 kPa 1.96 kPa
16.64 22.14 kPa 1.72 kPa
19.40 28.74 kPa 1.64 kPa
23.37 40.32 kPa 1.37 kPa
30.09 °C 3.93 5.49 kPa 4.15 kPa
7.43 11.51 kPa 3.89 kPa
9.75 16.00 kPa 3.80 kPa
12.77 23.33 kPa 3.55 kPa
17.76 38.69 kPa 3.31 kPa
17.84 38.81 kPa 3.24 kPa
21.47 53.94 kPa 2.95 kPa
40 °C 3.79 8.15 kPa 7.13 kPa
7.36 17.73 kPa 6.76 kPa
11.06 29.13 kPa 6.55 kPa
15.55 47.14 kPa 5.52 kPa
17.33 57.02 kPa
20.85 76.81 kPa 5.04 kPa
50 °C 3.29 10.54 kPa 11.95 kPa
5.90 20.17 kPa 11.61 kPa
8.91 32.88 kPa 11.07 kPa
11.57 45.56 kPa 10.75 kPa
14.15 60.18 kPa 10.27 kPa
14.94 64.94 kPa 10.03 kPa
60 °C 3.86 18.25 kPa 19.21 kPa
5.77 28.78 kPa
7.78 40.05 kPa 18.47 kPa
9.37 50.09 kPa 18.07 kPa
9.37 63.43 kPa 17.39 kPa



[edit] Hebrew Calendar

[edit] Summary of Calendar Calculations

The audience for this section is computer programmers who wish to write software that accurately computes dates in the Hebrew calendar. The following details are sufficient to generate such software.

1) The Hebrew calendar is computed by lunations. One lunation is reckoned at 29 days, 12 hours, 44 minutes, 3⅓ seconds, or equivalently 765433 halakim = 29 days, 13753 halakim.
2) A common year must be either 353, 354, or 355 days; a leap year must be 383, 384, or 385 days. A 353 or 383 day year is called kesidrah. A 354 or 384 day year is shelemah. A 355 or 385 day year is haserah.
3) Leap years follow a 19 year schedule in which years 3, 6, 8, 11, 14, 17, and 19 are leap years. The Jewish year 5752 (which starts in Gregorian year 1991) is the first year of a cycle.
4) 19 years is the same as 235 lunations.
5) The months are Tishri, Heshvan, Kislev, Tebeth, Shebhat, Adar, Nisan, Iyyar, Sivan, Tammuz, Av, and Elul. In addition, a second Adar (also called Veadar, Adar II, or Adar Sheni) is added in leap years. When added, it follows Adar.
6) Each month has either 29 or 30 days. A 30 day month is male, a 29 day month is haser.
Nisan, Sivan, Av, Tishri, and Shebhat are always male.
Iyyar, Tammuz, Elul, Tebeth, and Adar II are always haser.
Adar is male in leap years, haser in common years.
Heshvan and Kislev vary, but when they differ, Heshvan is haser and Kislev is male.
7) Tishri 1st (Rosh Hashana) is the day of a molad (new moon) unless certain conditions (dahiyyah sing; dahiyyot pl) exist.
a) This dahiyyah exists whenever Tishri 10 (Yom Kippur) would fall on a Friday or a Sunday, or if Tishri 21 (7th day of Sukkot) would fall on a Saturday. This is equivalent to the molad being on Sunday, Wednesday, or Friday. Whenever this happens, Tishri 1 is delayed by 1 day.
b) This dahiyyah exists whenever the molad occurs on or after noon. When this dahiyyah exists, Tishri 1 is delayed by 1 day. If this causes dahiyyah A to exist, Tishri 1 is delayed an additional day.
c) If the year is to be a common year and the molad falls on a Tuesday on or after 3:11:20 am (3 hours 204 halakim) Jerusalem time, Tishri 1 is delayed by 2 days. This is because if it weren't delayed, the resulting year would be 356 days long.
d) If the new year follows a leap year and the molad is on a Monday on or after 9:32:43 and one third seconds (9 hours 589 halakim), Tishri 1 is delayed 1 day. This is because if it weren't, the preceding year would have only 382 days.
8) Delays are implemented by adding a day to Kislev of the preceding year, making it male. If Kislev is already male, the day is added to Heshvan of the preceding year, making it male also. If a delay of 2 days is called for, both Heshvan and Kislev of the preceding year become male.
9) The molad of 08-Sep-1991, which is Rosh Hashana of Hebrew yer, 5752, is Julian day, 2448509 plus 3294 halakim.

[edit] Future Project: Tide Prediction

Plan to explain the method of harmonic constituents as detailed in U.S. Govt. Special Publication 92.

[edit] Reorganize Heat Capacity Ratio Table

Heat Capacity Ratio for various gases[9][10]
Temp. Gas γ   Temp. Gas γ   Temp. Gas γ
–181°C H2 1.597 –76°C H2 1.453 20°C H2 1.41
100°C H2 1.404 400°C H2 1.387 1000°C H2 1.358
2000°C H2 1.318 20°C He 1.66 20°C H2O 1.33
100°C H2O 1.324 200°C H2O 1.310 –180°C Ar 1.76
20°C Ar 1.67 0°C Dry Air 1.403 20°C Dry Air 1.40
100°C Dry Air 1.401 200°C Dry Air 1.398 400°C Dry Air 1.393
1000°C Dry Air 1.365 1400°C Dry Air 1.341 2000°C Dry Air 1.088
0°C CO2 1.310 20°C CO2 1.30 100°C CO2 1.281
400°C CO2 1.235 1000°C CO2 1.195 20°C CO 1.40
–181°C O2 1.45 –76°C O2 1.415 20°C O2 1.40
100°C O2 1.399 200°C O2 1.397 400°C O2 1.394
20°C NO 1.40 20°C N2O 1.31 –181°C N2 1.47
15°C N2 1.404 20°C Cl2 1.34 –115°C CH4 1.41
–74°C CH4 1.35 20°C CH4 1.32 19°C Ne 1.64
19°C Kr 1.68 19°C Xe 1.66 15°C SO2 1.29
360°C Hg 1.67
Heat Capacity Ratio for various gases[11][12]
Temp. Gas γ   Temp. Gas γ   Temp. Gas γ
–181°C H2 1.597 200°C Dry Air 1.398 20°C NO 1.40
–76°C 1.453 400°C 1.393 20°C N2O 1.31
20°C 1.41 1000°C 1.365 –181°C N2 1.47
100°C 1.404 2000°C 1.088 15°C 1.404
400°C 1.387 0°C CO2 1.310 20°C Cl2 1.34
1000°C 1.358 20°C 1.30 –115°C CH4 1.41
2000°C 1.318 100°C 1.281 –74°C 1.35
20°C He 1.66 400°C 1.235 20°C 1.32
20°C H2O 1.33 1000°C 1.195 15°C NH3 1.310
100°C 1.324 20°C CO 1.40 19°C Ne 1.64
200°C 1.310 –181°C O2 1.45 19°C Xe 1.66
–180°C Ar 1.76 –76°C 1.415 19°C Kr 1.68
20°C 1.67 20°C 1.40 15°C SO2 1.29
0°C Dry Air 1.403 100°C 1.399 360°C Hg 1.67
20°C 1.40 200°C 1.397 15°C C2H6 1.22
100°C 1.401 400°C 1.394 16°C C3H8 1.13




[edit] Translating Water (data page) equivalent from German

[edit] Current version of translation

[edit] Physical and Thermodynamic Tables

In the following tables, values are temperature dependent and to a lesser degree pressure dependent, and are arranged by state of aggregation (s=solid, lq=liquid, g=gas), which are clearly a function of temperature and pressure. All of the data were computed from data given in "Formulation of the Thermodynamic Properties of Ordinary Water Substance for Scientific and General Use" (1984). This applies to:

[edit] Standard conditions

In the following table, material data is given for standard pressure of 0.1 MPa (equivalent to 1 bar). Up to 99.63 °C (the boiling point of water), at this pressure water exists as a liquid. Above that, it exists as water vapor.

 
Water/Steam Data Table at Standard Pressure (0.1 MPa)
T °C V
dm³/kg
H
kJ/kg
U
kJ/kg
S
kJ/(kg·K)
cp
kJ/(kg·K)
γ
10–3/K
λ
mW / (m·K)
η
μPa·s
σ1
mN/m
0 lq 1.0002 0.06 -0.04 -0.0001 4.228 -0.080 561.0 1792 75.65
5 1.0000 21.1 21.0 0.076 4.200 0.011 570.6 1518 74.95
10 1.0003 42.1 42.0 0.151 4.188 0.087 580.0 1306 74.22
15 1.0009 63.0 62.9 0.224 4.184 0.152 589.4 1137 73.49
20 1.0018 83.9 83.8 0.296 4.183 0.209 598.4 1001 72.74
25 1.0029 104.8 104.7 0.367 4.183 0.259 607.2 890.4 71.98
30 1.0044 125.8 125.7 0.437 4.183 0.305 615.5 797.7 71.20
35 1.0060 146.7 146.6 0.505 4.183 0.347 623.3 719.6 70.41
40 1.0079 167.6 167.5 0.572 4.182 0.386 630.6 653.3 69.60
45 1.0099 188.5 188.4 0.638 4.182 0.423 637.3 596.3 68.78
50 1.0121 209.4 209.3 0.704 4.181 0.457 643.6 547.1 67.95
60 1.0171 251.2 251.1 0.831 4.183 0.522 654.4 466.6 66.24
70 1.0227 293.1 293.0 0.955 4.187 0.583 663.1 404.1 64.49
80 1.0290 335.0 334.9 1.075 4.194 0.640 670.0 354.5 62.68
90 1.0359 377.0 376.9 1.193 4.204 0.696 675.3 314.6 60.82
99.63 lq 1.0431 417.5 417.4 1.303 4.217 0.748 679.0 283.0 58.99
g 1694.3 2675 2505 7.359 2.043 2.885 25.05 12.26
100 g 1696.1 2675 2506 7.361 2.042 2.881 25.08 12.27 58.92
200 2172.3 2874 2657 7.833 1.975 2.100 33.28 16.18 37.68
300 2638.8 3073 2810 8.215 2.013 1.761 43.42 20.29 14.37
500 3565.5 3488 3131 8.834 2.135 1.297 66.970 28.57
750 4721.0 4043 3571 9.455 2.308 0.978 100.30 38.48
1000 5875.5 4642 4054 9.978 2.478 0.786 136.3 47.66
1 The values for surface tension for the liquid section of the table are for a liquid/air interface. Values for the gas section of the table are for a liquid/saturated steam interface.


[edit] Triple Point

In the following table, material data is given with a pressure of 0.0006117 MPa (equivalent to 0.006117 bar). Up to a temperature of 0.01 °C, the triple point of water, water normally exists as ice, except for supercooled water, for which one data point is tabulated here. At the triple point ice can exist together with both liquid water and vapor. At higher temperatures the data is for water vapor only.

 
Water/Steam Data Table at Triple Point Pressure (0.0006117 MPa)
T °C V
dm³/kg
H
kJ/kg
U
kJ/kg
S
kJ/(kg·K)
cp
kJ/(kg·K)
γ
10–3/K
λ
mW / (m·K)
η
μPa·s
0 lq 1.0002 –0.04 –0.04 –0.0002 4.339 –0.081 561.0 1792
0.1 s 1.0908 –333.4 –333.4 –1.221 1.93 0.1 2.2
lq 1.0002 0.0 0 0 4.229 –0.080 561.0 1791
g 205986 2500 2374 9.154 1.868 3.672 17.07 9.22
5 g 209913 2509 2381 9.188 1.867 3.605 17.33 9.34
10 213695 2519 2388 9.222 1.867 3.540 17.60 9.46
15 217477 2528 2395 9.254 1.868 3.478 17.88 9.59
20 221258 2537 2402 9.286 1.868 3.417 18.17 9.73
25 225039 2547 2409 9.318 1.869 3.359 18.47 9.87
30 228819 2556 2416 9.349 1.869 3.304 18.78 10.02
35 232598 2565 2423 9.380 1.870 3.249 19.10 10.17
40 236377 2575 2430 9.410 1.871 3.197 19.43 10.32
45 240155 2584 2437 9.439 1.872 3.147 19.77 10.47
50 243933 2593 2444 9.469 1.874 3.098 20.11 10.63
60 251489 2612 2459 9.526 1.876 3.004 20.82 10.96
70 259043 2631 2473 9.581 1.880 2.916 21.56 11.29
80 266597 2650 2487 9.635 1.883 2.833 22.31 11.64
90 274150 2669 2501 9.688 1.887 2.755 23.10 11.99
100 281703 2688 2515 9.739 1.891 2.681 23.90 12.53
200 357216 2879 2661 10.194 1.940 2.114 32.89 16.21
300 432721 3076 2811 10.571 2.000 1.745 43.26 20.30
500 583725 3489 3132 11.188 2.131 1.293 66.90 28.57
750 772477 4043 3571 11.808 2.307 0.977 100.20 38.47
1000 961227 4642 4054 12.331 2.478 0.785 136.30 47.66


[edit] Saturated Vapor Pressure

The following table is based on different, complementary sources and approximation formulas, whose values are of various quality and accuracy. The values in the temperature range of –100 °C to 100 °C were inferred from D. Sunday (1982) and are quite uniform and exact. The values in the temperature range of the boiling point of the water up to the critical point (100 °C to 374 °C), are drawn from different sources and are substantially less accurate, hence they should be understood and used also only as approximate values.[13][14][15][16]

To use the values corrctly, consider the following points:

  • The values apply only to smooth interfaces and in the absence other gases or gas mixtures such as air. Hence they apply only to pure phases and need a correction factor for systems in which air is present.
  • The values were not computed according formulas widely used in the US, but using somewhat more exact formulas (see below), which can also also be used to compute further values in the appropriate temperature ranges.
  • The saturated steam pressure over water in the temperature range of –100 °C to –50 °C is only extrapolated.
  • The values have various units (Pa, hPa or bar), which must be considered when reading them.

[edit] Formulas

The table values for –100 °C to 100 °C were computed by the following formulas, where T is in Kelvins and vapor pressures, Pw and Pi are in Pa.

Over Liquid Water

loge(Pw)  =  –6094.4642 T–1 + 21.1249952 – 2.724552×10–2 T + 1.6853396×10–5 T2 + 2.4575506 loge(T)

For Temperature Range: 173.15 K to 373.15 K or equivalently –100 °C to 100 °C

Over Ice

loge(Pi)  =  –5504.4088 T–1 – 3.5704628 – 1.7337458×10–2 T + 6.5204209×10–6 T2 + 6.1295027 loge(T)

For temperature range: 173.15 K to 273.15 K or equivalently –100 °C to 0 °C

[edit] Triple point

An important basic value, which is not registered in the table, is the saturated vapor pressure at the triple point of water. The internationally accepted value according to measurements of Guildner, Johnson and Jones (1976) amounts to:

Pw(ttp  =  0.01 °C)  =  611.657 Pa ± 0.010 Pa at (1-α)  =  99%
 
Values of Saturated Vapor Pressure of Water
Temp.
t in °C
Pi(t) over ice
in Pa
Pw(t) over water
in Pa
Temp.
t in °C
Pw(t) over water
in hPa
Temp.
t in °C
P(t)
in bar
Temp.
t in °C
P(t)
in bar
Temp.
t in °C
P(t)
in bar
-100 0.0013957 0.0036309 0 6.11213 100 1.01 200 15.55 300 85.88
-99 0.0017094 0.0044121 1 6.57069 101 1.05 201 15.88 301 87.09
-98 0.0020889 0.0053487 2 7.05949 102 1.09 202 16.21 302 88.32
-97 0.002547 0.0064692 3 7.58023 103 1.13 203 16.55 303 89.57
-96 0.0030987 0.0078067 4 8.13467 104 1.17 204 16.89 304 90.82
-95 0.0037617 0.0093996 5 8.72469 105 1.21 205 17.24 305 92.09
-94 0.0045569 0.011293 6 9.35222 106 1.25 206 17.60 306 93.38
-93 0.0055087 0.013538 7 10.0193 107 1.30 207 17.96 307 94.67
-92 0.0066455 0.016195 8 10.728 108 1.34 208 18.32 308 95.98
-91 0.0080008 0.019333 9 11.4806 109 1.39 209 18.70 309 97.31
-90 0.0096132 0.023031 10 12.2794 110 1.43 210 19.07 310 98.65
-89 0.011528 0.027381 11 13.1267 111 1.48 211 19.46 311 100
-88 0.013797 0.032489 12 14.0251 112 1.53 212 19.85 312 101.37
-87 0.016482 0.038474 13 14.9772 113 1.58 213 20.25 313 102.75
-86 0.019653 0.045473 14 15.9856 114 1.64 214 20.65 314 104.15
-85 0.02339 0.053645 15 17.0532 115 1.69 215 21.06 315 105.56
-84 0.027788 0.063166 16 18.1829 116 1.75 216 21.47 316 106.98
-83 0.032954 0.074241 17 19.3778 117 1.81 217 21.89 317 108.43
-82 0.039011 0.087101 18 20.6409 118 1.86 218 22.32 318 109.88
-81 0.046102 0.10201 19 21.9757 119 1.93 219 22.75 319 111.35
-80 0.054388 0.11925 20 23.3854 120 1.99 220 23.19 320 112.84
-79 0.064057 0.13918 21 24.8737 121 2.05 221 23.64 321 114.34
-78 0.07532 0.16215 22 26.4442 122 2.12 222 24.09 322 115.86
-77 0.088419 0.1886 23 28.1006 123 2.18 223 24.55 323 117.39
-76 0.10363 0.21901 24 29.847 124 2.25 224 25.02 324 118.94
-75 0.12127 0.25391 25 31.6874 125 2.32 225 25.49 325 120.51
-74 0.14168 0.29390 26 33.6260 126 2.4 226 25.98 326 122.09
-73 0.16528 0.33966 27 35.6671 127 2.47 227 26.46 327 123.68
-72 0.19252 0.39193 28 37.8154 128 2.55 228 26.96 328 125.30
-71 0.22391 0.45156 29 40.0754 129 2.62 229 27.46 329 126.93
-70 0.26004 0.51948 30 42.452 130 2.7 230 27.97 330 128.58
-69 0.30156 0.59672 31 44.9502 131 2.78 231 28.48 331 130.24
-68 0.34921 0.68446 32 47.5752 132 2.87 232 29.01 332 131.92
-67 0.40383 0.78397 33 50.3322 133 2.95 233 29.54 333 133.62
-66 0.46633 0.89668 34 53.2267 134 3.04 234 30.08 334 135.33
-65 0.53778 1.0242 35 56.2645 135 3.13 235 30.62 335 137.07
-64 0.61933 1.1682 36 59.4513 136 3.22 236 31.18 336 138.82
-63 0.71231 1.3306 37 62.7933 137 3.32 237 31.74 337 140.59
-62 0.81817 1.5136 38 66.2956 138 3.42 238 32.31 338 142.37
-61 0.93854 1.71950 39 69.9675 139 3.51 239 32.88 339 144.18
-60 1.0753 1.9509 40 73.8127 140 3.62 240 33.47 340 146.00
-59 1.2303 2.2106 41 77.8319 141 3.72 241 34.06 341 147.84
-58 1.4060 2.5018 42 82.0536 142 3.82 242 34.66 342 149.71
-57 1.6049 2.8277 43 86.4633 143 3.93 243 35.27 343 151.58
-56 1.8296 3.1922 44 91.0757 144 4.04 244 35.88 344 153.48
-55 2.0833 3.5993 45 95.8984 145 4.16 245 36.51 345 155.40
-54 2.3694 4.0535 46 100.939 146 4.27 246 37.14 346 157.34
-53 2.6917 4.5597 47 106.206 147 4.39 247 37.78 347 159.30
-52 3.0542 5.1231 48 111.708 148 4.51 248 38.43 348 161.28
-51 3.4618 5.7496 49 117.452 149 4.64 249 39.09 349 163.27
-50 3.9193 6.4454 50 123.4478 150 4.76 250 39.76 350 165.29
-49 4.4324 7.2174 51 129.7042 151 4.89 251 40.44 351 167.33
-48 5.0073 8.0729 52 136.2304 152 5.02 252 41.12 352 169.39
-47 5.6506 9.0201 53 143.0357 153 5.16 253 41.81 353 171.47
-46 6.3699 10.068 54 150.1298 154 5.29 254 42.52 354 173.58
-45 7.1732 11.225 55 157.5226 155 5.43 255 43.23 355 175.70
-44 8.0695 12.503 56 165.2243 156 5.58 256 43.95 356 177.85
-43 9.0685 13.911 57 173.2451 157 5.72 257 44.68 357 180.02
-42 10.181 15.463 58 181.5959 158 5.87 258 45.42 358 182.21
-41 11.419 17.17 59 190.2874 159 6.03 259 46.16 359 184.43
-40 12.794 19.048 60 199.3309 160 6.18 260 46.92 360 186.66
-39 14.321 21.11 61 208.7378 161 6.34 261 47.69 361 188.93
-38 16.016 23.372 62 218.5198 162 6.50 262 48.46 362 191.21
-37 17.893 25.853 63 228.6888 163 6.67 263 49.25 363 193.52
-36 19.973 28.57 64 239.2572 164 6.84 264 50.05 364 195.86
-35 22.273 31.544 65 250.2373 165 7.01 265 50.85 365 198.22
-34 24.816 34.795 66 261.6421 166 7.18 266 51.67 366 200.61
-33 27.624 38.347 67 273.4845 167 7.36 267 52.49 367 203.02
-32 30.723 42.225 68 285.7781 168 7.55 268 53.33 368 205.47
-31 34.140 46.453 69 298.5363 169 7.73 269 54.17 369 207.93
-30 37.903 51.060 70 311.7731 170 7.92 270 55.03 370 210.43
-29 42.046 56.077 71 325.5029 171 8.11 271 55.89 371 212.96
-28 46.601 61.534 72 339.7401 172 8.31 272 56.77 372 215.53
-27 51.607 67.466 73 354.4995 173 8.51 273 57.66 373 218.13
-26 57.104 73.909 74 369.7963 174 8.72 274 58.56 374 220.64
-25 63.134 80.902 75 385.6459 175 8.92 275 59.46 374.15 221.20
-24 69.745 88.485 76 402.0641 176 9.14 276 60.38
-23 76.987 96.701 77 419.0669 177 9.35 277 61.31
-22 84.914 105.60 78 436.6708 178 9.57 278 62.25
-21 93.584 115.22 79 454.8923 179 9.80 279 63.20
-20 103.06 125.63 80 473.7485 180 10.03 280 64.17
-19 113.41 136.88 81 493.2567 181 10.26 281 65.14
-18 124.70 149.01 82 513.4345 182 10.50 282 66.12
-17 137.02 162.11 83 534.3000 183 10.74 283 67.12
-16 150.44 176.23 84 555.8714 184 10.98 284 68.13
-15 165.06 191.44 85 578.1673 185 11.23 285 69.15
-14 180.97 207.81 86 601.2068 186 11.49 286 70.18
-13 198.27 225.43 87 625.009 187 11.75 287 71.22
-12 217.07 244.37 88 649.5936 188 12.01 288 72.27
-11 237.49 264.72 89 674.9806 189 12.28 289 73.34
-10 259.66 286.57 90 701.1904 190 12.55 290 74.42
-9 283.69 310.02 91 728.2434 191 12.83 291 75.51
-8 309.75 335.16 92 756.1608 192 13.11 292 76.61
-7 337.97 362.10 93 784.9639 193 13.40 293 77.72
-6 368.52 390.95 94 814.6743 194 13.69 294 78.85
-5 401.58 421.84 95 845.3141 195 13.99 295 79.99
-4 437.31 454.88 96 876.9057 196 14.29 296 81.14
-3 475.92 490.19 97 909.4718 197 14.60 297 82.31
-2 517.62 527.93 98 943.0355 198 14.91 298 83.48
-1 562.62 568.22 99 977.6203 199 15.22 299 84.67
0 611.153 611.213 100 1013.25 200 15.55 300 85.88
Temp.
t in °C
Pi(t) over ice
in Pa
Pw(t) over water
in Pa
Temp.
t in °C
Pw(t) over water
in hPa
Temp.
t in °C
P(t)
in bar
Temp.
t in °C
P(t)
in bar
Temp.
t in °C
P(t)
in barbar


Material is copied in from

[edit] Drucktabellen

Die in der folgenden Tabelle dargestellten Größen sind temperatur- und teilweise auch druckabhängig, richten sich aber in jedem Fall nach dem Aggregatzustand des Wassers (hier s = fest; l = flüssig; g = gasförmig). Dieser wird durch Druck und Temperatur eindeutig bestimmt. Alle Daten wurden Grigull et. al. (1990) entnommen, welche sie nach der Vorgabe durch die "Formulation of the Thermodynamic Properties of Ordinary Water Substance for Scientific and General Use" (1984) der IAPWS mit einer verringerten Iterationsschranke berechneten. Es handelt sich um:

  • \vartheta - die Celsius-Temperatur in Grad Celsius
  • v – das spezifische Volumen in Kubikdezimeter je Kilogramm
  • h – die spezifische Enthalpie in Kilojoule je Kilogramm
  • u – die spezifische Innere Energie in Kilojoule je Kilogramm
  • s – die spezifische Entropie in Kilojoule je Kilogramm mal Kelvin
  • cp - die spezifische Wärmekapazität bei konstantem Druck in Kilojoule je Kilogramm mal Kelvin
  • γ – Volumenausdehnungskoeffzient in 10-3 durch Kelvin
  • λ – Wärmeleitfähigkeit in Milliwatt je Meter mal Kelvin
  • η – Viskosität in Mikropascal mal Sekunde
  • σ – Oberflächenspannung in Millinewton je Meter

[edit] Standardbedingungen

In der folgenden Tabelle handelt es sich um die Stoffdaten bei Standarddruck (SATP), also 0,1 Megapascal (entspricht einem bar). Bis zu einer Temperatur von 99,63 °C, dem Siedepunkt des Wasser bei diesem Druck, liegt das Wasser als Flüssigkeit vor, darüber als Wasserdampf.

\vartheta
°C
v
dm³/kg
h
kJ/kg
u
kJ/kg
s
kJ/(kg·K)
cp
kJ/(kg·K)
γ
10-3/K
λ
mW / (m·K)
η
μPa·s
σ1
mN/m
0 1,0002 0,06 -0,04 -0,0001 4,228 -0,080 561,0 1792 75,65
5 1,0000 21,1 21,0 0,076 4,200 0,011 570,6 1518 74,95
10 1,0003 42,1 42,0 0,151 4,188 0,087 580,0 1306 74,22
15 1,0009 63,0 62,9 0,224 4,184 0,152 589,4 1137 73,49
20 1,0018 83,9 83,8 0,296 4,183 0,209 598,4 1001 72,74
25 1,0029 104,8 104,7 0,367 4,183 0,259 607,2 890,4 71,98
30 1,0044 125,8 125,7 0,437 4,183 0,305 615,5 797,7 71,20
35 1,0060 146,7 146,6 0,505 4,183 0,347 623,3 719,6 70,41
40 1,0079 167,6 167,5 0,572 4,182 0,386 630,6 653,3 69,60
45 1,0099 188,5 188,4 0,638 4,182 0,423 637,3 596,3 68,78
50 1,0121 209,4 209,3 0,704 4,181 0,457 643,6 547,1 67,95
60 1,0171 251,2 251,1 0,831 4,183 0,522 654,4 466,6 66,24
70 1,0227 293,1 293,0 0,955 4,187 0,583 663,1 404,1 64,49
80 1,0290 335,0 334,9 1,075 4,194 0,640 670,0 354,5 62,68
90 1,0359 377,0 376,9 1,193 4,204 0,696 675,3 314,6 60,82
99,63 l 1,0431 417,5 417,4 1,303 4,217 0,748 679,0 283,0 58,99
g 1694,3 2675 2505 7,359 2,043 2,885 25,05 12,26
100 1696,1 2675 2506 7,361 2,042 2,881 25,08 12,27 58,92
200 2172,3 2874 2657 7,833 1,975 2,100 33,28 16,18 37,68
300 2638,8 3073 2810 8,215 2,013 1,761 43,42 20,29 14,37
500 3565,5 3488 3131 8,834 2,135 1,297 66,970 28,57
750 4721,0 4043 3571 9,455 2,308 0,978 100,30 38,48
1000 5875,5 4642 4054 9,978 2,478 0,786 136,3 47,66
1 Die Werte der Oberflächenspannung gelten nicht für den Normaldruck, sondern für den zur jeweiligen Temperatur gehörigen Sättigungsdampfdruck.

[edit] Tripelpunkt

In der folgenden Tabelle handelt es sich um die Stoffdaten bei einem Druck von 0,0006117 Megapascal (entspricht 0,006117 bar). Bis zu einer Temperatur von 0,01 °C, dem Tripelpunkt des Wassers, liegt das Wasser normalerweise als Eis vor, wurde jedoch hier für unterkühltes Wasser tabelliert. Am Tripelpunkt selbst kann es sowohl als Eis als auch Flüssigkeit oder Wasserdampf vorliegen, bei höheren Temperaturen handelt es sich jedoch wiederum um Wasserdampf.

\vartheta
°C
v
dm³/kg
h
kJ/kg
u
kJ/kg
s
kJ/(kg·K)
cp
kJ/(kg·K)
γ
10-3/K
λ
mW / (m·K)
η
μPa·s
σ1
mN/m
0 1,0002 -0,04 -0,04 -0,0002 4,339 -0,081 561,0 1792
0,1 s 1,0908 -333,4 -333,4 -1,221 1,93 0,1 2,2
l 1,0002 0,0 0 0 4,229 -0,080 561,0 1791
g 205986 2500 2374 9,154 1,868 3,672 17,07 9,22
5 209913 2509 2381 9,188 1,867 3,605 17,33 9,34
10 213695 2519 2388 9,222 1,867 3,540 17,60 9,46
15 217477 2528 2395 9,254 1,868 3,478 17,88 9,59
20 221258 2537 2402 9,286 1,868 3,417 18,17 9,73
25 225039 2547 2409 9,318 1,869 3,359 18,47 9,87
30 228819 2556 2416 9,349 1,869 3,304 18,78 10,02
35 232598 2565 2423 9,380 1,870 3,249 19,10 10,17
40 236377 2575 2430 9,410 1,871 3,197 19,43 10,32
45 240155 2584 2437 9,439 1,872 3,147 19,77 10,47
50 243933 2593 2444 9,469 1,874 3,098 20,11 10,63
60 251489 2612 2459 9,526 1,876 3,004 20,82 10,96
70 259043 2631 2473 9,581 1,880 2,916 21,56 11,29
80 266597 2650 2487 9,635 1,883 2,833 22,31 11,64
90 274150 2669 2501 9,688 1,887 2,755 23,10 11,99
100 281703 2688 2515 9,739 1,891 2,681 23,90 12,53
200 357216 2879 2661 10,194 1,940 2,114 32,89 16,21
300 432721 3076 2811 10,571 2,000 1,745 43,26 20,30
500 583725 3489 3132 11,188 2,131 1,293 66,90 28,57
750 772477 4043 3571 11,808 2,307 0,977 100,20 38,47
1000 961227 4642 4054 12,331 2,478 0,785 136,30 47,66
1 Die Werte der Oberflächenspannung sind hier identisch zur ersten Tabelle, wobei in gleicherweise der Sättigungsdampfdruck angewendet werden muss.

[edit] Sättigungsdampfdruck

Folgende Tabelle basiert auf verschiedenen, sich gegenseitig ergänzenden Quellen bzw. Näherungsformeln, was jedoch auch nach sich zieht, dass die Werte von unterschiedlicher Güte und Genauigkeit sind. Die Werte des Temperaturbereichs von -100 °C bis 100 °C wurden aus D. Sonntag (1982) entnommen und sind daher recht einheitlich und genau, wenn auch nicht auf dem neuesten Stand. Die Werte des Temperaturbereichs vom Siedepunkt des Wassers bis zum kritischen Punkt, also von 100 °C bis 374 °C, stammen jedoch aus unterschiedlichen Quellen und sind daher wesentlich ungenauer, folglich sollten sie auch nur als Orientierungswerte verstanden und genutzt werden.

Zur richtigen Nutzung der Werte sind folgende Punkte zu beachten:

  • Die Werte gelten nur für ebene Oberflächen und in der Abwesenheit anderer Gase bzw. Gasgemische wie Luft. Sie gelten also lediglich für reine Phasen und benötigen einen Korrekturfaktor bei der Anwesenheit von Luft.
  • Die Werte wurden nicht nach der Magnus-Formel berechnet, sondern nach etwas genaueren Formeln (siehe unten), mit deren Hilfe sich auch weitere Werte in den entsprechenden Temperaturintervallen berechnen lassen.
  • Die Sättigungsdampfdrücke über Wasser im Temperaturintervall von -100 °C bis -50 °C wurden lediglich extrapoliert.
  • Die Werte haben unterschiedliche Einheiten (Pa, hPa oder bar), was es beim ablesen zu beachten gilt.

[edit] Formeln

Berechnet wurden die Tabellenwerte von -100 °C bis 100 °C durch folgende Formeln:

Über Wasser:

E_w (T) = \exp \left(-6094{,}4642 \cdot T^{-1} + 21{,}1249952 - 2{,}724552 \cdot 10^{-2} \cdot T + 1{,}6853396 \cdot 10^{-5} \cdot T^2 + 2{,}4575506 \cdot \ln T\right)

Temperaturintervall:

173{,}15\ \mathrm{K} \leq T \leq 373{,}15\ \mathrm{K}, entspricht -100 \,^{\circ}\mathrm{C}\leq t \leq 100 \,^{\circ}\mathrm{C}

Über Eis:

E_i (T) = \exp \left( -5504{,}4088 \cdot T^{-1} - 3{,}5704628 - 1{,}7337458 \cdot 10^{-2} \cdot T + 6{,}5204209 \cdot 10^{-6} \cdot T^2 + 6{,}1295027 \cdot \ln T\right)

Temperaturintervall:

173{,}15\ \mathrm{K} \leq T \leq 273{,}15\ \mathrm{K}, entspricht -100 \,^{\circ}\mathrm{C} \leq t \leq 0 \,^{\circ}\mathrm{C}

Werden die Temperaturen in Kelvin eingesetzt, so ergibt sich der jeweilige Sättigungsdampfdruck E(T) in Pa.

[edit] Tripelpunkt

Ein wichtiger Grundwert, der nicht in die Tabelle eingetragen wurde, ist der Sättigungsdampfdruck beim Tripelpunkt des Wassers. Der international akzeptierte Bestwert nach Messungen von Guildner, Johnson und Jones (1976) beträgt:

E_w(t_{tr}=0{,}01 \,^{\circ}\mathrm{C}) = 611{,}657\ \mathrm{Pa}\ \pm 0{,}010\ \mathrm{Pa}\ \mathrm{bei}\ (1-\alpha)=99\mathrm{\%}

[edit] Tabelle

Beispielwerte des Sättigungsdampfdrucks von Wasser
Temperatur
t in °C
Ei(t) über Eis
p in Pa
Ew(t) über Wasser
p in Pa
Temperatur
t in °C
E(t) über Wasser
p in hPa
Temperatur
t in °C
E(t)
p in bar
Temperatur
t in °C
E(t)
p in bar
Temperatur
t in °C
E(t)
p in bar
-100 0,0013957 0,0036309 0 6,11213 100 1,01 200 15,55 300 85,88
-99 0,0017094 0,0044121 1 6,57069 101 1,05 201 15,88 301 87,09
-98 0,0020889 0,0053487 2 7,05949 102 1,09 202 16,21 302 88,32
-97 0,002547 0,0064692 3 7,58023 103 1,13 203 16,55 303 89,57
-96 0,0030987 0,0078067 4 8,13467 104 1,17 204 16,89 304 90,82
-95 0,0037617 0,0093996 5 8,72469 105 1,21 205 17,24 305 92,09
-94 0,0045569 0,011293 6 9,35222 106 1,25 206 17,6 306 93,38
-93 0,0055087 0,013538 7 10,0193 107 1,3 207 17,96 307 94,67
-92 0,0066455 0,016195 8 10,728 108 1,34 208 18,32 308 95,98
-91 0,0080008 0,019333 9 11,4806 109 1,39 209 18,7 309 97,31
-90 0,0096132 0,023031 10 12,2794 110 1,43 210 19,07 310 98,65
-89 0,011528 0,027381 11 13,1267 111 1,48 211 19,46 311 100
-88 0,013797 0,032489 12 14,0251 112 1,53 212 19,85 312 101,37
-87 0,016482 0,038474 13 14,9772 113 1,58 213 20,25 313 102,75
-86 0,019653 0,045473 14 15,9856 114 1,64 214 20,65 314 104,15
-85 0,02339 0,053645 15 17,0532 115 1,69 215 21,06 315 105,56
-84 0,027788 0,063166 16 18,1829 116 1,75 216 21,47 316 106,98
-83 0,032954 0,074241 17 19,3778 117 1,81 217 21,89 317 108,43
-82 0,039011 0,087101 18 20,6409 118 1,86 218 22,32 318 109,88
-81 0,046102 0,10201 19 21,9757 119 1,93 219 22,75 319 111,35
-80 0,054388 0,11925 20 23,3854 120 1,99 220 23,19 320 112,84
-79 0,064057 0,13918 21 24,8737 121 2,05 221 23,64 321 114,34
-78 0,07532 0,16215 22 26,4442 122 2,12 222 24,09 322 115,86
-77 0,088419 0,1886 23 28,1006 123 2,18 223 24,55 323 117,39
-76 0,10363 0,21901 24 29,847 124 2,25 224 25,02 324 118,94
-75 0,12127 0,25391 25 31,6874 125 2,32 225 25,49 325 120,51
-74 0,14168 0,2939 26 33,626 126 2,4 226 25,98 326 122,09
-73 0,16528 0,33966 27 35,6671 127 2,47 227 26,46 327 123,68
-72 0,19252 0,39193 28 37,8154 128 2,55 228 26,96 328 125,3
-71 0,22391 0,45156 29 40,0754 129 2,62 229 27,46 329 126,93
-70 0,26004 0,51948 30 42,452 130 2,7 230 27,97 330 128,58
-69 0,30156 0,59672 31 44,9502 131 2,78 231 28,48 331 130,24
-68 0,34921 0,68446 32 47,5752 132 2,87 232 29,01 332 131,92
-67 0,40383 0,78397 33 50,3322 133 2,95 233 29,54 333 133,62
-66 0,46633 0,89668 34 53,2267 134 3,04 234 30,08 334 135,33
-65 0,53778 1,0242 35 56,2645 135 3,13 235 30,62 335 137,07
-64 0,61933 1,1682 36 59,4513 136 3,22 236 31,18 336 138,82
-63 0,71231 1,3306 37 62,7933 137 3,32 237 31,74 337 140,59
-62 0,81817 1,5136 38 66,2956 138 3,42 238 32,31 338 142,37
-61 0,93854 1,7195 39 69,9675 139 3,51 239 32,88 339 144,18
-60 1,0753 1,9509 40 73,8127 140 3,62 240 33,47 340 146
-59 1,2303 2,2106 41 77,8319 141 3,72 241 34,06 341 147,84
-58 1,406 2,5018 42 82,0536 142 3,82 242 34,66 342 149,71
-57 1,6049 2,8277 43 86,4633 143 3,93 243 35,27 343 151,58
-56 1,8296 3,1922 44 91,0757 144 4,04 244 35,88 344 153,48
-55 2,0833 3,5993 45 95,8984 145 4,16 245 36,51 345 155,4
-54 2,3694 4,0535 46 100,939 146 4,27 246 37,14 346 157,34
-53 2,6917 4,5597 47 106,206 147 4,39 247 37,78 347 159,3
-52 3,0542 5,1231 48 111,708 148 4,51 248 38,43 348 161,28
-51 3,4618 5,7496 49 117,452 149 4,64 249 39,09 349 163,27
-50 3,9193 6,4454 50 123,4478 150 4,76 250 39,76 350 165,29
-49 4,4324 7,2174 51 129,7042 151 4,89 251 40,44 351 167,33
-48 5,0073 8,0729 52 136,2304 152 5,02 252 41,12 352 169,39
-47 5,6506 9,0201 53 143,0357 153 5,16 253 41,81 353 171,47
-46 6,3699 10,068 54 150,1298 154 5,29 254 42,52 354 173,58
-45 7,1732 11,225 55 157,5226 155 5,43 255 43,23 355 175,7
-44 8,0695 12,503 56 165,2243 156 5,58 256 43,95 356 177,85
-43 9,0685 13,911 57 173,2451 157 5,72 257 44,68 357 180,02
-42 10,181 15,463 58 181,5959 158 5,87 258 45,42 358 182,21
-41 11,419 17,17 59 190,2874 159 6,03 259 46,16 359 184,43
-40 12,794 19,048 60 199,3309 160 6,18 260 46,92 360 186,66
-39 14,321 21,11 61 208,7378 161 6,34 261 47,69 361 188,93
-38 16,016 23,372 62 218,5198 162 6,5 262 48,46 362 191,21
-37 17,893 25,853 63 228,6888 163 6,67 263 49,25 363 193,52
-36 19,973 28,57 64 239,2572 164 6,84 264 50,05 364 195,86
-35 22,273 31,544 65 250,2373 165 7,01 265 50,85 365 198,22
-34 24,816 34,795 66 261,6421 166 7,18 266 51,67 366 200,61
-33 27,624 38,347 67 273,4845 167 7,36 267 52,49 367 203,02
-32 30,723 42,225 68 285,7781 168 7,55 268 53,33 368 205,47
-31 34,14 46,453 69 298,5363 169 7,73 269 54,17 369 207,93
-30 37,903 51,06 70 311,7731 170 7,92 270 55,03 370 210,43
-29 42,046 56,077 71 325,5029 171 8,11 271 55,89 371 212,96
-28 46,601 61,534 72 339,7401 172 8,31 272 56,77 372 215,53
-27 51,607 67,466 73 354,4995 173 8,51 273 57,66 373 218,13
-26 57,104 73,909 74 369,7963 174 8,72 274 58,56 374 220,64
-25 63,134 80,902 75 385,6459 175 8,92 275 59,46 374,15 221,2
-24 69,745 88,485 76 402,0641 176 9,14 276 60,38
-23 76,987 96,701 77 419,0669 177 9,35 277 61,31
-22 84,914 105,6 78 436,6708 178 9,57 278 62,25
-21 93,584 115,22 79 454,8923 179 9,8 279 63,2
-20 103,06 125,63 80 473,7485 180 10,03 280 64,17
-19 113,41 136,88 81 493,2567 181 10,26 281 65,14
-18 124,7 149,01 82 513,4345 182 10,5 282 66,12
-17 137,02 162,11 83 534,3 183 10,74 283 67,12
-16 150,44 176,23 84 555,8714 184 10,98 284 68,13
-15 165,06 191,44 85 578,1673 185 11,23 285 69,15
-14 180,97 207,81 86 601,2068 186 11,49 286 70,18
-13 198,27 225,43 87 625,009 187 11,75 287 71,22
-12 217,07 244,37 88 649,5936 188 12,01 288 72,27
-11 237,49 264,72 89 674,9806 189 12,28 289 73,34
-10 259,66 286,57 90 701,1904 190 12,55 290 74,42
-9 283,69 310,02 91 728,2434 191 12,83 291 75,51
-8 309,75 335,16 92 756,1608 192 13,11 292 76,61
-7 337,97 362,1 93 784,9639 193 13,4 293 77,72
-6 368,52 390,95 94 814,6743 194 13,69 294 78,85
-5 401,58 421,84 95 845,3141 195 13,99 295 79,99
-4 437,31 454,88 96 876,9057 196 14,29 296 81,14
-3 475,92 490,19 97 909,4718 197 14,6 297 82,31
-2 517,62 527,93 98 943,0355 198 14,91 298 83,48
-1 562,62 568,22 99 977,6203 199 15,22 299 84,67
0 611,153 611,213 100 1013,25 200 15,55 300 85,88

[edit] Literatur

  • L.A. Guildner, D.P. Johnson und F.E. Jones (1976): Vapor pressure of Water at Its Triple Point. J. Res. NBS - A, Vol. 80A, No. 3, p. 505 - 521
  • Klaus Scheffler (1981): Wasserdampftafeln: thermodynam. Eigenschaften von Wasser u. Wasserdampf bis 800°C u. 800 bar (Water Vapor Tables: Thermodynamic Characteristics of Water and Water Vapor to 800°C and 800 bar), Berlin [u.a.] ISBN 3540109307
  • D. Sonntag und D. Heinze (1982): Sättigungsdampfdruck- und Sättigungsdampfdichtetafeln für Wasser und Eis. (Saturated Vapor Pressure and Saturated Vapor Density Tables for Water and Ice)(1. Aufl.), VEB Deutscher Verlag für Grundstoffindustrie
  • Ulrich Grigull, Johannes Staub, Peter Schiebener (1990): Steam Tables in SI-Units - Wasserdampftafeln. Springer-Verlagdima gmbh

[edit] Original draft of Frederick Jacobi article

Frederick Jacobi (born May 4,1891 in San Francisco, California; died October 24, 1952 in New York City of heart failure) was a prolific American composer, whose works include symphonies, concerti, chamber music, works for solo piano and for solo organ, lieder, and one opera. Besides composing, his career included teaching at Juilliard School of Music and serving as the director of the American section of the International Society for Contemporary Music.

[edit] Early life

Frederick Jacobi was the son of San Francisco wholesale wine merchant, Frederick Jacobi Sr. and Flora Brandenstein, whom Frederick Sr. had married in 1875. During the composer's childhood years, he demonstrated his musical talent, composing short pieces at the piano and playing tunes from contemporary musical comedies by ear. In these years the family traveled each summer to visit relatives in New York City. The scenery of those cross-country train rides later provided the themes of a number of his nature-inspired compositions.

[edit] Musical Training and Career

When Frederick Sr. died in 1911, Frederick Jr. inherited the estate, which provided him enough wealth that he could devote his entire livelihood to music. In his twenties Jacobi studied music and composition under such masters as Isidore Philipp of the Paris Conservatory, Ernest Bloch and Rubin Goldmark in New York, and Paul Juon in Berlin.

In 1917, while working as a vocal coach and assistant conductor at the Metropolitan Opera, he met and married Irene Schwarcz, who, at the time, was studying piano at the New York Institute of Musical Art (which later became Juilliard). Irene would go on to become an accomplished concert pianist, and played piano parts in many performances and recordings of Jacobi's works.

Jacobi enlisted in the army shortly after marrying Irene, where he served as a saxaphone player in the Alcatraz Army Band. He was discharged in 1919, at which time he moved to New York to be in closer contact with the American composers of the time. For the remainder of his life he published and performed new works nearly every year -- sometimes several in the same year (see compositions section). Major American orchestras such as the New York Philharmonic, the Philadelphia Orchestra, and the Boston, Chicago, and San Francisco symphonies performed Jacobi's orchestral compositions during the years of his life.

In works from what has become known as Jacobi's Indian period (late 1920's and early 1930's), he incorporated rhythms and other elements from indigenous Native American music he had heard in his travels through the American southwest. Indeed he spent the winter of 1927 with the Navajo and Pueblo of New Mexico studying their music.

In 1942-1944 Jacobi collaborated with playwright and librettist, Herman Voaden, to produce the opera, The Prodigal Son, which debuted at the American Opera Society of Chicago in May of 1945.

Jacobi is also known as a composer of works with Judaic themes. His interest in this genre began with a 1930 commission from Temple Emanu-El of New York for a sabbath evening service. This soon led to other works with biblical titles that explored the musical traditions of Judaism. Although little of Jacobi's secular work is performed today, his liturgical works continue to enjoy performaces in synagogues.

Jacobi's work largely rejects the polytonality and atonality that was popular with the avante-garde composers of his time. Instead he finds his influence in the classical and romantic periods. New York Times critic Olin Downes described the aesthetics of Jacobi's music as "not so much of the 20th as of the 19th century."

[edit] Frederick Jacobi quotes on musical composition

"I am a great believer in melody; a believer, too, that music should give pleasure and not try to solve philosophical problems."

"The surest way to kill whatever originality one possesses within himself is to try to be original!"

[edit] Links

[edit] Compositions

  • 1915 The Pied Piper, Symphonic Poem
  • 1916 Three Songs to Poems by Sarojini Naidu (“The Faery Isle of Janjira,” “Love and Death,” “In the Night,” for high voice and piano)
  • 1917 A California Suite (for orchestra)
  • 1918 Nocturne, for string quartet
  • 1918 Psalmody (piano vocal score)
  • 1920 Three Songs, for high voice with piano (words by Sarojini Naidu; “Palanquin-Bearers,” “In a Time of Flowers,” “From a Latticed Balcony”)
  • 1920 The Eve of Saint Agnes (25 min. Symphonic prelude after the poem of John Keats)
  • 1921 Three Preludes for Violin and Piano
  • 1921 Morning and Evening at Blue Hill (for two violins and string orchestra with piano)
  • 1921 A Festival Prelude (for orchestra)
  • 1922 Symphony No. 1 (Subtitled Assyrian, 22 min.)
  • 1922 Three Songs to Poems by Chaucer (for voice and piano) “Roundel” and “Ballade” published as Two Poems by Geoffrey Chaucer
  • 1923 Two Assyrian Prayers (piano vocal score)
  • 1923 Two Assyrian Prayers (Soprano or Tenor and chamber orchestra, 12 min. French text by Rebecca Godchaux. “To Ishtar” and “To Bel-Marduk”)
  • 1924 Three Preludes for Violin, with orchestral accompaniment
  • 1924 String Quartet (Based) on (American) Indian Themes (18 min.)
  • 1925 The Poet in the Desert (after the poem by C.E.S. Wood, for orchestra, chorus and baritone solo)
  • 1926 Nocturne (for flute and small orchestra; 5 min.) Rewritten second movement of Symphony No. 1, 1922)
  • 1926 Marsyas (for violin and piano)
  • 1927-28 Indian Dances/Danses Indiennes/Indianische Tänze (16 ½ min.) ( Buffalo Dance, Butterfly Dance, War Dance, Corn Dance; Suite for Orchestra)
  • 1930-31 Sabbath Evening Service According to the Union Prayer Book (Friday Evening Service, baritone solo/cantor, mixed chorus, a capella; 20 min.)
  • 1932 Concerto (Three Psalms) for Cello and Orchestra (16 min.) Reduction for Piano and Cello,
  • 1933 String Quartet No. 2 (23 min.)
  • 1933 Six Pieces for the Organ for Use in the Synagogue. One piece published as Prelude.
  • 1933 Three Preludes for Organ.
  • 1934-35 Concerto for Piano and Orchestra (26 min.)
  • 1934 Piano Pieces for Children (includes A Lovely Little Movie Actress, Once Upon a Time, A Charming Prince, There Was a Wicked Fairy and Six Caprices) A Lovely Little Movie Actress and Once Upon a Time published separately.
  • 1936 Scherzo for Flute, Oboe, Clarinet, Bassoon and Horn (5 min.) (Scherzo for Wind Instruments)
  • 1936-37 Concerto for Violin and Orchestra (16 min.)
  • 1937 Cadenza to Mozart’s Rondo for Piano and Orchestra (Kochel No. 386)
  • 1937 Swing Boy (violin and piano)
  • 1938 Hagiographa: Three Biblical Narratives for String Quartet and Piano (26 min.)
  • 1938 Preludes on Traditional Melodies
  • 1939 Ave Rota: (Hail to the Wheel [of Fortune]) Three Pieces in Multiple Style for Small Orchestra and Piano (“The Swing” [“La Balançoire”], “The Merman” and “May-Dance;” written for the Juilliard Alumni). (14 min. The same for large orchestra and piano)
  • 1939 Dunam Po (“A Dunam Here”) Palestinian folk song arrangement published in Hans Nathan, ed. Folk Songs of the New Palestine.
  • 194? Variations on a Theme by Moussorgsky (for cello and piano)
  • 1940 Shemesh (based on a Palestinian Folk Song) Cello and Piano
  • 1940 Rhapsody for Harp and String Orchestra (8 min.)
  • 1941 Fantasy for Viola and Piano (9 min.)
  • 1941 Ode for Orchestra (12 min.)
  • 1941 Cadenza for Mozart’s Concerto for Piano and Orchestra in C Minor (Kochel No. 491)
  • 1941 Night Piece for Flute and Small Orchestra (5 min.) (Rewritten Nocturne in Niniveh, 1926)
  • 1941 Night Piece and Dance, for flute and piano.
  • 1942 Ballade for Violin and Piano (11 min.)
  • 1942 Hymn for Men’s Chorus (text by Saadia Gaon; 5 min.)
  • 1942 From the Prophet Nehemiah: Three Excerpts for Voice and Two Pianos (5, 4 and 6 minutes respectively)
  • 1942-44 The Prodigal Son: Opera in Three Acts based on Four Early American Prints. Text by Herman Voaden. (Full orchestra, 2 ½ hours). [Act I of first version inscribed “ July 18, 1943, Riverdale, N.Y.”; Act II “ Nov. 17, 1943” and Act III “ Sept. 9, 1944”]
  • 1943 Penelope (arrangement for viola and piano from the 1921 Vocalises.)
  • 1944 Dances From The Prodigal Son Arranged for Two Pianos, Four Hands (10 min.) [polka, polonaise, waltz, tarantella]
  • 1944 Night Piece for Flute, Oboe, Clarinet, String Quintet and Piano
  • 1944 Music for Monticello (Trio for Flute, Cello and Piano, 20 min.)
  • 1945 String Quartet No. 3 (26 min.)
  • 1945 Ahavas Olom (Ahavat Olam; 3 min.) (For tenor solo/cantor mixed voices and organ)
  • 1945 Kaddish (for organ)
  • 1945 Toccata (for organ)
  • 1945 Toccata for piano solo. From Prelude and Toccata.
  • 1945 Prelude in E Minor, for piano From Prelude and Toccata.
  • 1945 Impressions from the Odyssey (three pieces for violin and piano; “Ulysses,” “Penelope,” “The Return”)
  • 1945 Fantasy Sonata for Piano (9 min.)
  • 1945 Four Dances From The Prodigal Son (orchestra, 18 min.)
  • 1946 Concertino for Piano and String Orchestra (17 min.)
  • 1946 Kaddish (for cantor, chorus and organ)
  • 1946 Two Pieces in Sabbath Mood (Kaddish and Oneg Shabbat) (for orchestra, 2 min. and 9 min. Originally composed as two separate works for organ solo: Kaddish and Toccata; transcribed for small orchestra, 1946)
  • 1946 Moods (for piano)
  • 1946 Introduction and Toccata, for piano solo
  • 1946 Prelude in E Minor for piano solo
  • 1946 Contemplation (to a poem by William Blake, for mixed voices with piano accompaniment; 5:30 min.)
  • 1946 Toccata (for organ)
  • 1947 Symphony in C (Symphony No. 2, 21 min.)
  • 1947 Meditation for Trombone and Piano
  • 1947 Suite Fantasque (for piano)
  • 1948 Three Songs to Words by Philip Freneau (for medium voice and piano). (“On the Sleep of Plants” [1790], “Elegy” [1786], “Ode to Freedom” [1795])
  • 1948 Ode to Zion (text by Jehuda Halevi) for mixed voices and two harps
  • 1948 Two Dances From The Prodigal Son (arranged for piano, four hands by the composer) [waltz, polka]
  • 1948 Music Hall: Overture for Orchestra (6 min.)
  • 1949 Yeibichai (Yébiché): Variations for Orchestra on an American Indian Theme (9 min.)
  • 1949? Tuari: Nocturne for String Orchestra (“From the [Lento movement of] the String Quartet on Indian Themes”)
  • 1949 Music Hall Suite
  • 1949 Fanfare, in Memory of James Whitcomb Riley: Born 1849 (wind instruments and percussion)
  • 1949 Ashrey Haish (arrangement for mixed voices and string orchestra of a Zionist song by Mordecai Zaira)
  • 1950 Three Quiet Preludes (for organ)
  • 1950 Ballade Concertante for two pianos
  • 1950 Ballade Concertante (Symphonie Concertante) for piano and orchestra
  • 1950-51 Sonata for Cello and Piano
  • 1951 Two Pieces for Flute and Orchestra: Night Piece and Dance (Nocturne in Nineveh and Dance
  • 1951 Capriccio for Violin and Piano
  • 1951 Violin Pieces (with piano; “Alpha,” “Ad Astram,” “Bärentanz”)
  • 1951 Night Piece and Dancefor Flute and Piano (Nocturne in Niniveh, for flute and piano)
  • 1951-52 Arvit L’Shabbat (Friday Evening Service No. 2) for organ, baritone solo/cantor, mixed voices
  • 1952 O May the Words for organ and mixed voices
  • 1952 Serenade (Revised Ballade/Symphonie Concertante; arrangement for two pianos by the composer)
  • 1952 Serenade for Piano and Orchestra (Revised Ballade/Symphonie Concertante)


[edit] Density of ethanol at various temperatures

Data obtained from Lange's Handbook of Chemistry, 10th ed.

Temp. Density   Temp. Density   Temp. Density
0°C 0.80625   13°C 0.79535   26°C 0.78437
1°C 0.80541 14°C 0.79451 27°C 0.78352
2°C 0.80457 15°C 0.79367 28°C 0.78267
3°C 0.80374 16°C 0.79283 29°C 0.78182
4°C 0.80290 17°C 0.79198 30°C 0.78097
5°C 0.80207 18°C 0.79114 31°C 0.78012
6°C 0.80123 19°C 0.79029 32°C 0.77927
7°C 0.80039 20°C 0.78945 33°C 0.77841
8°C 0.79956 21°C 0.78860 34°C 0.77756
9°C 0.79872 22°C 0.78775 35°C 0.77671
10°C 0.79788 23°C 0.78691 36°C 0.77585
11°C 0.79704 24°C 0.78606 37°C 0.77500
12°C 0.79620 25°C 0.78522 38°C 0.77414
39°C 0.77329

[edit] Properties of aqueous ethanol solutions

Data obtained from Lange's Handbook of Chemistry, 10th ed. The annotation, d a°C/b°C, indicates density of solution at temperature a divided by density of pure water at temperature b.

% wt
ethanol
% vol
ethanol
grams
ethanol
per 100 cc
15.56°C
d 10°C/4°C d 20°C/4°C d 25°C/4°C d 30°C/4°C d 20°C/20°C d 25°C/25°C freezing
temp.
0.0 0.0 0.0 0.99973 0.99823 0.99708 0.99568 1.00000 1.00000 0°C
1.0 0.99785 0.99636 0.99520 0.99379 0.99813 0.99811
2.0 0.99602 0.99453 0.99336 0.99194 0.99629 0.99627
2.5 3.13 0.99363 –1°C
3.0 0.99426 0.99275 0.99157 0.99014 0.99451 0.99447
4.0 5.00 3.97 0.99258 0.99103 0.98984 0.98839 0.99279 0.99274
4.8 6.00 4.76 0.98971 –2°C
5.0 0.99098 0.98938 0.98817 0.98670 0.99113 0.99106
5.05 6.30 5.00 0.98930
6.0 0.98946 0.98780 0.98656 0.98507 0.98955 0.98945
6.8 8.47 0.98658 –3°C
7.0 0.98801 0.98627 0.98500 0.98347 0.98802 0.98788
8.0 0.98660 0.98478 0.98346 0.98189 0.98653 0.98634
9.0 0.98524 0.98331 0.98193 0.98031 0.98505 0.98481
10.0 12.40 9.84 0.98393 0.98187 0.98043 0.97575 0.98361 0.98330
11.0 0.98267 0.98047 0.97897 0.97723 0.98221 0.98184
11.3 14.0 11.11 0.98006 –5°C
12.0 0.98145 0.97910 0.97753 0.97573 0.98084 0.98039
13.0 0.98026 0.97775 0.97611 0.97424 0.97948 0.97897
13.78 17.00 13.49 0.98658 –6.1°C
14.0 0.97911 0.97643 0.97472 0.97278 0.97816 0.97757
15.0 0.97800 0.97514 0.97334 0.97133 0.97687 0.97619
15.02 18.50 14.68 0.97511
16.0 0.97692 0.97387 0.97199 0.96990 0.97560 0.97484
16.4 20.2 0.97336 –7.5°C
17.0 0.97583 0.97259 0.97062 0.96844 0.97431 0.97346
17.5 21.5 0.97194 –8.7°C
18.0 22.10 17.54 0.97473 0.97129 0.96923 0.96697 0.97301 0.97207
18.8 23.1 0.97024 –9.4°C
19.0 0.97363 0.96997 0.96782 0.96547 0.97169 0.97065
20.0 0.97252 0.96864 0.96639 0.96395 0.97036 0.96922
20.01 24.50 19.44 0.96863
20.3 24.8 0.96823 –10.6°C
21.0 0.97139 0.96729 0.96495 0.96242 0.96901 0.96778
22.0 0.97024 0.96592 0.96348 0.96087 0.96763 0.96630
22.11 27.00 21.43 0.96578 –12.2°C
23.0 0.96907 0.96453 0.96199 0.95929 0.96624 0.96481
24.0 0.96787 0.96312 0.96048 0.95769 0.96483 0.96329
24.2 29.5 0.96283 –14.0°C
25.0 30.40 24.12 0.96665 0.96168 0.95895 0.95607 0.96339 0.96176
26.0 0.96539 0.96020 0.95738 0.95422 0.96190 0.96018
26.7 32.4 0.95914 –16.0°C
27.0 0.96406 0.95867 0.95576 0.95272 0.96037 0.95856
28.0 33.90 26.90 0.96268 0.95710 0.95410 0.95098 0.95880 0.95689
29.0 0.96125 0.95548 0.95241 0.94922 0.95717 0.95520
29.9 36.1 0.95400 –18.9°C
30.0 36.20 28.73 0.95977 0.95382 0.95067 0.94741 0.95551 0.95345
31.0 0.95823 0.95212 0.94890 0.94557 0.95381 0.95168
32.0 0.95665 0.95038 0.94709 0.94370 0.95207 0.94986
33.0 0.95502 0.94860 0.94525 0.94180 0.95028 0.94802
33.8 40.5 0.94715 –23.6°C
34.0 0.95334 0.94679 0.94337 0.93986 0.94847 0.94613
35.0 0.95162 0.94494 0.94146 0.93790 0.94662 0.94422
35.04 41.90 33.25 0.94486
36.0 0.94986 0.94306 0.93952 0.93591 0.94473 0.94227
37.0 0.94805 0.94114 0.93756 0.93390 0.94281 0.94031
38.0 0.94620 0.93919 0.93556 0.93186 0.94086 0.93830
39.0 46.3 0.94431 0.93720 0.93353 0.92979 0.93886 0.93626 –28.7°C
40.0 0.94238 0.93518 0.93148 0.92770 0.93684 0.93421
40.04 47.40 37.61 0.93510
41.0 0.94042 0.93314 0.92940 0.92558 0.93479 0.93212
42.0 0.93842 0.93107 0.92729 0.92344 0.93272 0.93001
43.0 0.93639 0.92897 0.92516 0.92128 0.93062 0.92787
44.0 0.93433 0.92685 0.92301 0.91910 0.92849 0.92571
45.0 0.93226 0.92472 0.92085 0.91692 0.92636 0.92355
45.31 53.00 42.07 0.92406
46.0 0.93017 0.92257 0.91868 0.91472 0.92421 0.92137
46.3 53.8 0.92193 –33.9°C
47.0 0.92806 0.92041 0.91649 0.91250 0.92204 0.91917
48.0 0.92593 0.91823 0.91429 0.91028 0.91986 0.91697
49.0 0.92379 0.91604 0.91208 0.90805 0.91766 0.91475
50.0 0.92162 0.91384 0.90985 0.90580 0.91546 0.91251
50.16 58.0 46.04 0.91349
51.0 0.91943 0.91160 0.90760 0.90353 0.91322 0.91026
52.0 0.91723 0.90936 0.90524 0.90125 0.91097 0.90799
53.0 0.91502 0.90711 0.90307 0.89896 0.90872 0.90571
54.0 0.91279 0.90485 0.90079 0.89667 0.90645 0.90343
55.0 0.91055 0.90258 0.89850 0.89437 0.90418 0.90113
55.16 63.0 50.00 0.90220
56.0 0.90831 0.90031 0.89621 0.89206 0.90191 0.89833
56.1 63.6 0.90008 –41.0°C
57.0 0.90607 0.89803 0.89392 0.88975 0.89962 0.89654
58.0 0.90381 0.89574 0.89162 0.88744 0.89733 0.89423
59.0 0.90154 0.89344 0.88931 0.88512 0.89502 0.89191
60.0 0.89927 0.89113 0.88699 0.88278 0.89271 0.88959
60.33 68.0 53.98 0.89038
61.0 0.89898 0.88882 0.88466 0.88044 0.89040 0.88725
62.0 0.89468 0.88650 0.88233 0.87809 0.88807 0.88491
63.0 0.89237 0.88417 0.87998 0.87574 0.88574 0.88256
64.0 0.89006 0.88183 0.87763 0.87337 0.88339 0.88020
65.0 0.88774 0.87948 0.87527 0.87100 0.88104 0.87783
66.0 0.88541 0.87713 0.87291 0.86863 0.87869 0.87547
67.0 0.88308 0.87477 0.87054 0.86625 0.87632 0.87309
68.0 0.88071 0.87241 0.86817 0.86387 0.87396 0.87071
69.0 0.87839 0.87004 0.86579 0.86148 0.87158 0.86833
70.0 0.87602 0.86766 0.86340 0.85908 0.86920 0.86593
71.0 0.87365 0.86527 0.86100 0.85667 0.86680 0.86352
71.9 78.3 0.86311 –51.3°C
72.0 0.87127 0.86287 0.85859 0.85426 0.86440 0.86110
73.0 0.86888 0.86047 0.85618 0.85184 0.86200 0.85869
74.0 0.86648 0.85806 0.85376 0.84941 0.85958 0.85626
75.0 0.86408 0.85564 0.85135 0.84698 0.85716 0.85383
76.0 0.86168 0.85322 0.84891 0.84455 0.85473 0.85140
77.0 0.85927 0.85079 0.84647 0.84211 0.85230 0.84895
78.0 0.85685 0.84835 0.84403 0.83966 0.84985 0.84650
79.0 0.85422 0.84590 0.84158 0.83720 0.84740 0.84404
80.0 0.85197 0.84344 0.83911 0.83473 0.84494 0.84157
81.0 0.84950 0.84096 0.83664 0.83224 0.84245 0.83909
82.0 0.84702 0.83848 0.83415 0.82974 0.83997 0.83659
83.0 0.84453 0.83599 0.83164 0.82724 0.83747 0.83408
84.0 0.84203 0.83348 0.82913 0.82473 0.83496 0.83156
85.0 0.83951 0.83095 0.82660 0.82220 0.83242 0.82902
86.0 0.83697 0.82840 0.82405 0.81965 0.82987 0.82646
87.0 0.83441 0.82323 0.82148 0.81708 0.82729 0.82389
88.0 0.83181 0.82323 0.81888 0.81448 0.82469 0.82128
89.0 0.82919 0.82062 0.81626 0.81186 0.82207 0.81865
90.0 0.82654 0.81797 0.81362 0.80922 0.81942 0.81600
91.00 94.00 74.62 0.82386 0.81529 0.81094 0.80655 0.81674 0.81331
92.0 0.82114 0.81257 0.80823 0.80384 0.81401 0.81060
93.0 0.81839 0.80983 0.80549 0.80111 0.81127 0.80785
94.0 0.81561 0.80705 0.80272 0.79835 0.80848 0.80507
95.0 0.81278 0.80424 0.79991 0.79555 0.80567 0.80225
96.0 0.80991 0.80138 0.79706 0.79271 0.80280 0.79939
97.0 0.80698 0.79846 0.79415 0.78981 0.79988 0.79648
98.0 0.80399 0.79547 0.79117 0.78684 0.79688 0.79349
99.0 0.80094 0.79243 0.78814 0.78382 0.79383 0.79045
100.0 100.0 79.39 0.79784 0.78934 0.78506 0.78075 0.79074 0.78736 −114.3 °C
% wt
ethanol
% vol
ethanol
grams
ethanol
per 100 cc
15.56°C
d 10°C/4°C d 20°C/4°C d 25°C/4°C d 30°C/4°C d 20°C/20°C d 25°C/25°C freezing
temp.

[edit] Properties of aqueous methanol solutions

% wt
methanol
% vol
methanol
d 15.6°C/4°C d 0°C/4°C d 10°C/4°C d 20°C/4°C freezing
temp °C
0 0 0.99908 0.99984 0.99970 0.99820 0.0
1 1.25 0.99728 0.9981 0.9980 0.9965
2 2.50 0.99543 0.9963 0.9962 0.9943
3 3.75 0.99370 0.9946 0.9945 0.9931
3.9 5 0.9938 –2.2
4 4.99 0.99198 0.9930 0.9929 0.9914
5 6.22 0.99029 0.9914 0.9912 0.9896
6 7.45 0.98864 0.9899 0.9896 0.9880
7 8.68 0.98701 0.9884 0.9881 0.9863
8 9.91 0.98547 0.9870 0.9865 0.9847
8.1 10 0.9872 –5.0
9 11.13 0.98547 0.9856 0.9849 0.9831
10 12.35 0.98241 0.9842 0.9834 0.9815
11 13.56 0.98093 0.9829 0.9820 0.9799
12 14.77 0.97945 0.9816 0.9805 0.9784
12.2 15 0.9810 –8.3
13 15.98 0.97802 0.9804 0.9791 0.9768
14 17.18 0.97660 0.9792 0.9778 0.9754
15 18.38 0.97518 0.9780 0.9764 0.9740
16 19.58 0.97377 0.9769 0.9751 0.9725
16.4 20 0.975 –11.7
17 20.77 0.97237 0.9758 0.9739 0.9710
18 21.96 0.97096 0.9747 0.9726 0.9696
19 23.15 0.96955 0.9736 0.9713 0.9681
20 24.33 0.96814 0.9725 0.9700 0.9666
20.6 25 0.968 –15.6
21 25.51 0.96673 0.9714 0.9687 0.9651
22 26.69 0.96533 0.9702 0.9673 0.9636
23 27.86 0.96392 0.9690 0.9660 0.9622
24 29.03 0.96251 0.9678 0.9646 0.9607
24.9 30 0.964 –20.0
25 30.19 0.96108 0.9666 0.9632 0.9592
26 31.35 0.95963 0.9654 0.9628 0.9576
27 32.51 0.95817 0.9642 0.9604 0.9562
28 33.66 0.95668 0.9629 0.9590 0.9546
29 34.81 0.95518 0.9616 0.9575 0.9531
29.2 35 0.957 –25.0
30 35.95 0.95366 0.9604 0.9560 0.9515
31 37.09 0.95213 0.9590 0.9546 0.9499
32 38.22 0.95056 0.9576 0.9531 0.9483
33 39.35 0.94896 0.9563 0.9516 0.9466
33.6 40 0.950 –30.0
34 40.48 0.94734 0.9549 0.9500 0.9450
35 41.59 0.94570 0.9534 0.9484 0.9433
36 42.71 0.94404 0.9520 0.9469 0.9416
37 43.82 0.94237 0.9505 0.9453 0.9398
38 44.92 0.94067 0.9490 0.9437 0.9381 –35.6
39 46.02 0.93894 0.9475 0.9420 0.9363
40 47.11 0.93720 0.9459 0.9403 0.9345
41 48.20 0.93543 0.9443 0.9387 0.9327
42 49.28 0.93365 0.9427 0.9370 0.9309
43 50.35 0.93185 0.9411 0.9352 0.9290
44 51.42 0.93001 0.9395 0.9334 0.9272
45 52.49 0.92815 0.9377 0.9316 0.9252
46 53.54 0.92627 0.9360 0.9298 0.9234
47 54.60 0.92436 0.9342 0.9279 0.9214
48 55.64 0.92242 0.9324 0.9260 0.9196
49 56.68 0.92048 0.9306 0.9240 0.9176
50 57.71 0.91852 0.9287 0.9221 0.9156
51 58.74 0.91653 0.9269 0.9202 0.9135
52 59.76 0.91451 0.9250 0.9182 0.9114
53 60.77 0.91248 0.9230 0.9162 0.9094
54 61.78 0.91044 0.9211 0.9142 0.9073
55 62.78 0.90839 0.9191 0.9122 0.9052
56 63.78 0.90631 0.9172 0.9101 0.9032
57 64.77 0.90421 0.9151 0.9080 0.9010
58 65.75 0.90210 0.9131 0.9060 0.8988
59 66.73 0.89996 0.9111 0.9039 0.8968
60 67.69 0.89781 0.9090 0.9018 0.8946
61 68.65 0.89563 0.9068 0.8998 0.8924
62 69.61 0.89341 0.9046 0.8977 0.8902
63 70.55 0.89117 0.9024 0.8955 0.8879
64 71.49 0.88890 0.9002 0.8933 0.8856
65 72.42 0.88662 0.8980 0.8911 0.8834
66 73.34 0.88433 0.8958 0.8888 0.8811
67 74.26 0.88203 0.8935 0.8865 0.8787
68 75.17 0.87971 0.8913 0.8842 0.8763
69 76.08 0.87739 0.8891 0.8818 0.8738
70 76.98 0.87507 0.8869 0.8794 0.8715
71 77.86 0.87271 0.8847 0.8770 0.8690
72 78.75 0.87033 0.8824 0.8747 0.8665
73 79.62 0.86792 0.8801 0.8724 0.8641
74 80.48 0.86546 0.8778 0.8699 0.8616
75 81.34 0.86300 0.8754 0.8676 0.8592
76 82.18 0.86051 0.8729 0.8651 0.8567
77 83.02 0.85801 0.8705 0.8626 0.8542
78 83.86 0.85551 0.8680 0.8602 0.8518
79 84.68 0.85300 0.8657 0.8577 0.8494
80 85.50 0.85048 0.8634 0.8551 0.8469
81 86.31 0.84794 0.8610 0.8527 0.8446
82 87.11 0.84536 0.8585 0.8501 0.8420
83 87.90 0.84274 0.8560 0.8475 0.8394
84 88.68 0.84009 0.8535 0.8449 0.8366
85 89.45 0.83742 0.8510 0.8422 0.8340
86 90.21 0.83475 0.8483 0.8394 0.8314
87 90.97 0.83207 0.8456 0.8367 0.8286
88 91.72 0.82937 0.8428 0.8340 0.8258
89 92.46 0.82667 0.8400 0.8314 0.8230
90 93.19 0.82396 0.8374 0.8287 0.8202
91 93.92 0.82124 0.8347 0.8261 0.8174
92 94.63 0.81849 0.8320 0.8234 0.8146
93 95.33 0.81568 0.8293 0.8208 0.8118
94 96.02 0.81285 0.8266 0.8180 0.8090
95 96.70 0.80999 0.8240 0.8152 0.8062
96 97.37 0.80713 0.8212 0.8124 0.8034
97 98.04 0.80428 0.8186 0.8096 0.8005
98 98.70 0.80143 0.8158 0.8068 0.7976
99 99.35 0.79859 0.8130 0.8040 0.7948
100 100 0.79577 0.8102 0.8009 0.7917 –97.8
% wt
methanol
% vol
methanol
d 15.6°C/4°C d 0°C/4°C d 10°C/4°C d 20°C/4°C freezing
temp °C

[edit] Carbon dioxide tables

[edit] Solubility in water at various temperatures

Aqueous Solubility of CO2 at 760 mm Hg pressure
Temperature Dissolved CO2
volume
at 0 °C, 760 mm Hg
per volume H2O
grams/100 ml H2O
0 °C 1.713 0.3346
1 °C 1.646 0.3213
2 °C 1.527 0.3091
3 °C 1.527 0.2978
4 °C 1.473 0.2871
5 °C 1.424 0.2774
6 °C 1.377 0.2681
7 °C 1.331 0.2589
8 °C 1.282 0.2492
9 °C 1.237 0.2403
10 °C 1.194 0.2318
11 °C 1.154 0.2239
12 °C 1.117 0.2165
13 °C 1.083 0.2098
14 °C 1.050 0.2032
15 °C 1.019 0.1970
16 °C 0.985 0.1903
17 °C 0.956 0.1845
18 °C 0.928 0.1789
19 °C 0.902 0.1737
20 °C 0.878 0.1688
21 °C 0.854 0.1640
22 °C 0.829 0.1590
23 °C 0.804 0.1540
24 °C 0.781 0.1493
25 °C 0.759 0.1449
26 °C 0.738 0.1406
27 °C 0.718 0.1366
28 °C 0.699 0.1327
29 °C 0.682 0.1292
30 °C 0.655 0.1257
35 °C 0.592 0.1105
40 °C 0.530 0.0973
45 °C 0.479 0.0860
50 °C 0.436 0.0761
60 °C 0.359 0.0576

[edit] Notes

  1. ^ a b Samans, Carl H. Engineering Metals and their Alloys MacMillan 1949
  2. ^ Streitweiser, Andrew Jr.; Heathcock, Clayton H.: Introduction to Organic Chemistry, Macmillan 1976, p 215
  3. ^ a b c Pauling, Linus General Chemistry, W.H. Freeman 1947 ed.
  4. ^ a b Brady, James E. and Holum, John R. Descriptive Chemistry of the Elements John Wiley and Sons
  5. ^ CSUDH
  6. ^ CSUDH
  7. ^ CRC Handbook of Chemistry and Physics, 44th ed.
  8. ^ Perman, Jour. Chem. Soc. 83 1168 (1903)
  9. ^ White, Frank M.: Fluid Mechanics 4th ed. McGraw Hill
  10. ^ Lange's Handbook of Chemistry, 10th ed. page 1524
  11. ^ White, Frank M.: Fluid Mechanics 4th ed. McGraw Hill
  12. ^ Lange's Handbook of Chemistry, 10th ed. page 1524
  13. ^ L.A. Guildner, D.P. Johnson und F.E. Jones (1976): Vapor pressure of Water at Its Triple Point. J. Res. NBS - A, Vol. 80A, No. 3, p. 505 - 521
  14. ^ Cite error: Invalid <ref> tag; no text was provided for refs named thermo
  15. ^ D. Sonntag und D. Heinze (1982): Sättigungsdampfdruck- und Sättigungsdampfdichtetafeln für Wasser und Eis. (Saturated Vapor Pressure and Saturated Vapor Density Tables for Water and Ice)(1. Aufl.), VEB Deutscher Verlag für Grundstoffindustrie
  16. ^ Ulrich Grigull, Johannes Staub, Peter Schiebener (1990): Steam Tables in SI-Units - Wasserdampftafeln. Springer-Verlagdima gmbh
Languages