Kalmanson combinatorial conditions

From Wikipedia, the free encyclopedia

In mathematics, the Kalmanson combinatorial conditions are a set of conditions on the distance matrix used in determining the solvability of the traveling salesman problem. These conditions apply to a special kind of cost matrix, the Kalmanson matrix.

[edit] References

  • KLINZ B. (1) ; WOEGINGER G. J. (1) ; The Steiner tree problem in Kalmanson matrices and in circulant matrices; Journal of combinatorial optimization (J. comb. optim.) ISSN 1382-6905 , 1999, vol. 3, no1, pp. 51-58 (11 ref.)
  • DEINEKO V. G. (1) ; VAN DER VEEN J. A. (2) ; RUDOLF R. ; WOEGINGER G. J. ; “Three easy special cases of the euclidean travelling salesman problem:” RAIRO. Recherche opérationnelle (RAIRO, Rech. opér.) ISSN 0399-0559 CODEN RSROD3 , 1997, vol. 31, no4, pp. 343-362 (13 ref.)
  • Traveling salesman games with the Monge property. Discrete Applied Mathematics, Volume 138, Issue 3, Pages 349-369 Y. Okamoto
  • The Quadratic Assignment Problem: Theory and Algorithms By Eranda. Cela, 1998 Springer Publishing, ISBN 0792348788
This combinatorics-related article is a stub. You can help Wikipedia by expanding it.