User:Jason13086

From Wikipedia, the free encyclopedia

j 03:21, 22 May 2007 (UTC)

\int \frac{\text{dy}}{\sqrt{y^2+\rho ^2}}=\frac{1}{2}\ln \left[\frac{\sqrt{y^2+\rho ^2}+y}{\sqrt{y^2+\rho ^2}-y}\right]

\int \frac{\text{dy}}{\sqrt{y^2+\rho ^2}}=\ln \left[y+\sqrt{y^2+\rho ^2}\right]

E = \frac{Q}{4 \pi  \epsilon _0 z R}\tan ^{-1}\left(\frac{R}{z}\right) \hat{z}

E = \int \frac{dq \hat{z}}{\rho^2+z^2} \text{,  } dq = \frac{A}{\rho}\rho d \rho d \phi

\left(
\begin{array}{c}
 \frac{x^2}{2} \\
 \frac{x^3}{3} \\
 \sin (x) \\
 -\cos (x) \\
 x \log (x)-x \\
 \sinh ^{-1}(x)
\end{array}
\right)

[edit] -