Isotopes of silver
From Wikipedia, the free encyclopedia
Naturally occurring silver (Ag) is composed of the two stable isotopes 107Ag and 109Ag with 107Ag being the more abundant (51.839% natural abundance). Standard atomic mass: 107.8682(2) u. Twenty-eight radioisotopes have been characterised with the most stable being 105Ag with a half-life of 41.29 days, 111Ag with a half-life of 7.45 days, and 112Ag with a half-life of 3.13 hours.
All of the remaining radioactive isotopes have half-lives that are less than an hour and the majority of these have half-lives that are less than 3 minutes. This element has numerous meta states with the most stable being 108mAg (t* 418 years), 110mAg (t* 249.79 days) and 106mAg (t* 8.28 days).
Isotopes of silver range in atomic weight from 93.943 u (94Ag) to 123.929 u (124Ag). The primary decay mode before the most abundant stable isotope, 107Ag, is electron capture and the primary mode after is beta decay. The primary decay products before 107Ag are palladium (element 46) isotopes and the primary products after are cadmium (element 48) isotopes.
The palladium isotope 107Pd decays by beta emission to 107Ag with a half-life of 6.5 million years. Iron meteorites are the only objects with a high enough palladium/silver ratio to yield measurable variations in 107Ag abundance. Radiogenic 107Ag was first discovered in the Santa Clara meteorite in 1978.
The discoverers suggest that the coalescence and differentiation of iron-cored small planets may have occurred 10 million years after a nucleosynthetic event. 107Pd versus Ag correlations observed in bodies, which have clearly been melted since the accretion of the solar system, must reflect the presence of live short-lived nuclides in the early solar system.
Standard atomic mass: 107.8682(2) u
[edit] Table
nuclide symbol |
Z(p) | N(n) | isotopic mass (u) |
half-life | nuclear spin |
representative isotopic composition (mole fraction) |
range of natural variation (mole fraction) |
---|---|---|---|---|---|---|---|
excitation energy | |||||||
93Ag | 47 | 46 | 92.94978(64)# | 5# ms [>1.5 µs] | 9/2+# | ||
94Ag | 47 | 47 | 93.94278(54)# | 37(18) ms [26(+26-9) ms] | 0+# | ||
94m1Ag | 1350(400)# keV | 422(16) ms | (7+) | ||||
94m2Ag | 6500(2000)# keV | 300(200) ms | (21+) | ||||
95Ag | 47 | 48 | 94.93548(43)# | 1.74(13) s | (9/2+) | ||
95m1Ag | 344.2(3) keV | <0.5 s | (1/2-) | ||||
95m2Ag | 2531(1) keV | <16 ms | (23/2+) | ||||
95m3Ag | 4859(1) keV | <40 ms | (37/2+) | ||||
96Ag | 47 | 49 | 95.93068(43)# | 4.45(4) s | (8+) | ||
96m1Ag | 0(50)# keV | 6.9(6) s | (2+) | ||||
96m2Ag | 700(200) ns | ||||||
97Ag | 47 | 50 | 96.92397(35) | 25.3(3) s | (9/2+) | ||
97mAg | 2343(49) keV | 5 ns | (21/2+) | ||||
98Ag | 47 | 51 | 97.92157(7) | 47.5(3) s | (5+) | ||
98mAg | 167.83(15) keV | 220(20) ns | (3+) | ||||
99Ag | 47 | 52 | 98.91760(16) | 124(3) s | (9/2)+ | ||
99mAg | 506.1(4) keV | 10.5(5) s | (1/2-) | ||||
100Ag | 47 | 53 | 99.91610(8) | 2.01(9) min | (5)+ | ||
100mAg | 15.52(16) keV | 2.24(13) min | (2)+ | ||||
101Ag | 47 | 54 | 100.91280(11) | 11.1(3) min | 9/2+ | ||
101mAg | 274.1(3) keV | 3.10(10) s | 1/2- | ||||
102Ag | 47 | 55 | 101.91169(3) | 12.9(3) min | 5+ | ||
102mAg | 9.3(4) keV | 7.7(5) min | 2+ | ||||
103Ag | 47 | 56 | 102.908973(18) | 65.7(7) min | 7/2+ | ||
103mAg | 134.45(4) keV | 5.7(3) s | 1/2- | ||||
104Ag | 47 | 57 | 103.908629(6) | 69.2(10) min | 5+ | ||
104mAg | 6.9(4) keV | 33.5(20) min | 2+ | ||||
105Ag | 47 | 58 | 104.906529(12) | 41.29(7) d | 1/2- | ||
105mAg | 25.465(12) keV | 7.23(16) min | 7/2+ | ||||
106Ag | 47 | 59 | 105.906669(5) | 23.96(4) min | 1+ | ||
106mAg | 89.66(7) keV | 8.28(2) d | 6+ | ||||
107Ag | 47 | 60 | 106.905097(5) | STABLE | 1/2- | 0.51839(8) | |
107mAg | 93.125(19) keV | 44.3(2) s | 7/2+ | ||||
108Ag | 47 | 61 | 107.905956(5) | 2.37(1) min | 1+ | ||
108mAg | 109.440(7) keV | 418(21) a | 6+ | ||||
109Ag | 47 | 62 | 108.904752(3) | STABLE | 1/2- | 0.48161(8) | |
109mAg | 88.0341(11) keV | 39.6(2) s | 7/2+ | ||||
110Ag | 47 | 63 | 109.906107(3) | 24.6(2) s | 1+ | ||
110m1Ag | 1.113 keV | 660(40) ns | 2- | ||||
110m2Ag | 117.59(5) keV | 249.950(24) d | 6+ | ||||
111Ag | 47 | 64 | 110.905291(3) | 7.45(1) d | 1/2- | ||
111mAg | 59.82(4) keV | 64.8(8) s | 7/2+ | ||||
112Ag | 47 | 65 | 111.907005(18) | 3.130(9) h | 2(-) | ||
113Ag | 47 | 66 | 112.906567(18) | 5.37(5) h | 1/2- | ||
113mAg | 43.50(10) keV | 68.7(16) s | 7/2+ | ||||
114Ag | 47 | 67 | 113.908804(27) | 4.6(1) s | 1+ | ||
114mAg | 199(5) keV | 1.50(5) ms | (<7+) | ||||
115Ag | 47 | 68 | 114.90876(4) | 20.0(5) min | 1/2- | ||
115mAg | 41.16(10) keV | 18.0(7) s | 7/2+ | ||||
116Ag | 47 | 69 | 115.91136(5) | 2.68(10) min | (2)- | ||
116mAg | 81.90(20) keV | 8.6(3) s | (5+) | ||||
117Ag | 47 | 70 | 116.91168(5) | 73.6(14) s [72.8(+20-7) s] | 1/2-# | ||
117mAg | 28.6(2) keV | 5.34(5) s | (7/2+) | ||||
118Ag | 47 | 71 | 117.91458(7) | 3.76(15) s | 1- | ||
118m1Ag | 45.79(9) keV | ~0.1 µs | 0(-) to 2(-) | ||||
118m2Ag | 127.49(5) keV | 2.0(2) s | 4(+) | ||||
118m3Ag | 279.37(20) keV | ~0.1 µs | (2+,3+) | ||||
119Ag | 47 | 72 | 118.91567(10) | 6.0(5) s | 1/2-# | ||
119mAg | 20(20)# keV | 2.1(1) s | 7/2+# | ||||
120Ag | 47 | 73 | 119.91879(8) | 1.23(4) s | 3(+#) | ||
120mAg | 203.0(10) keV | 371(24) ms | 6(-) | ||||
121Ag | 47 | 74 | 120.91985(16) | 0.79(2) s | (7/2+)# | ||
122Ag | 47 | 75 | 121.92353(22)# | 0.529(13) s | (3+) | ||
122mAg | 80(50)# keV | 1.5(5) s | 8-# | ||||
123Ag | 47 | 76 | 122.92490(22)# | 0.300(5) s | (7/2+) | ||
124Ag | 47 | 77 | 123.92864(21)# | 172(5) ms | 3+# | ||
124mAg | 0(100)# keV | 200# ms | 8-# | ||||
125Ag | 47 | 78 | 124.93043(32)# | 166(7) ms | (7/2+)# | ||
126Ag | 47 | 79 | 125.93450(32)# | 107(12) ms | 3+# | ||
127Ag | 47 | 80 | 126.93677(32)# | 79(3) ms | 7/2+# | ||
128Ag | 47 | 81 | 127.94117(32)# | 58(5) ms | |||
129Ag | 47 | 82 | 128.94369(43)# | 44(7) ms [46(+5-9) ms] | 7/2+# | ||
129mAg | 0(200)# keV | ~160 ms | 1/2-# | ||||
130Ag | 47 | 83 | 129.95045(36)# | ~50 ms | 0+ |
[edit] Notes
- The precision of the isotope abundances and atomic mass is limited through variations. The given ranges should be applicable to any normal terrestrial material.
- Geologically exceptional samples are known in which the isotopic composition lies outside the reported range. The uncertainty in the atomic mass may exceed the stated value for such specimens.
- Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
- Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC which use expanded uncertainties.
[edit] References
- Isotope masses from Ame2003 Atomic Mass Evaluation by G. Audi, A.H. Wapstra, C. Thibault, J. Blachot and O. Bersillon in Nuclear Physics A729 (2003).
- Isotopic compositions and standard atomic masses from Atomic weights of the elements. Review 2000 (IUPAC Technical Report). Pure Appl. Chem. Vol. 75, No. 6, pp. 683-800, (2003) and Atomic Weights Revised (2005).
- Half-life, spin, and isomer data selected from these sources. Editing notes on this article's talk page.
- Audi, Bersillon, Blachot, Wapstra. The Nubase2003 evaluation of nuclear and decay properties, Nuc. Phys. A 729, pp. 3-128 (2003).
- National Nuclear Data Center, Brookhaven National Laboratory. Information extracted from the NuDat 2.1 database (retrieved Sept. 2005).
- David R. Lide (ed.), Norman E. Holden in CRC Handbook of Chemistry and Physics, 85th Edition, online version. CRC Press. Boca Raton, Florida (2005). Section 11, Table of the Isotopes.
Isotopes of palladium | Isotopes of silver | Isotopes of cadmium |
Index to isotope pages · Table of nuclides |