Ion attachment mass spectrometry

From Wikipedia, the free encyclopedia

Ion attachment mass spectrometry
Acronym IAMS
Related items Chemical ionization
This box: view  talk  edit

Ion-attachment mass spectrometry (IAMS) is a form of mass spectrometry that uses a "soft" form of ionization similar to chemical ionization in which a cation is attached to the analyte molecule in a reactive collision:

M + X^+ + A \to MX^+ + A

Where M is the analyte molecule, X+ is the cation and A is a non-reacting collision partner.[1]

Contents

[edit] Principle

This technique is applicable to gases or any materials that can be vaporized. It uses a non-fragmenting non-conventional ionisation mode, by attachment of a lithium (or alkaline) ion to the gas to be analysed with a more traditional mass filter. This instrument is more dedicated to analysis of moderately-sized molecules such as organic or aromatic compounds.[2]

[edit] Applications

Currently, it is used industrially to verify, with a high throughput, the concentrations of brominated flame retardants (BFR) in plastics in compliance with European RoHS (Restriction of Hazardous Substances) regulation in place since 2006. The banned molecules include PBB and PBDE, whose concentration should not exceed 0.1% w/w. [3][4][5]

IAMS has also been used to analyze diesel exhaust particles[6], in ceramic processing [7] and in semiconductor critical SiO2 etch processing.

[edit] References

  1. ^ "Lithium ion attachment mass spectrometry: Instrumentation and features" . Review of Scientific Instruments. 
  2. ^ "Aromatic ion attachment mass spectrometry: an ion-molecule reaction for organosulfur analysis" . Organic Mass Spectrometry. 
  3. ^ The guide of environmental quality assurance for a supplier of JVC. JVC (July 2006).
  4. ^ Pittcon 2006; Poster by Y. Shiokawa; The Rapid Analysis of Brominated Flame Retardants in Resin Used for Electrical Appliances by Ion Attachment Mass Spectrometry.
  5. ^ "State of bromine based flame retarding agent mixing and its countermeasure" . Sangyo to Kankyo. 
  6. ^ Masaki H, Chen L, Korenaga T (2006). "Direct analysis of diesel exhaust particles by fragmentation-free mass spectrometry using ion attachment mass spectrometry". Environmental sciences : an international journal of environmental physiology and toxicology 13 (6): 347–52. PMID 17273150. 
  7. ^ Tsugoshi T, Nagaoka T, Nakamura M, Shiokawa Y, Watari K (2006). "Application of ion attachment mass spectrometry to evolved gas analysis for in situ monitoring of porous ceramic processing". Anal. Chem. 78 (7): 2366–9. doi:10.1021/ac0518248. PMID 16579621. 

[edit] Bibliography

  • Y. Shiokawa; M. Nakamura; H. Maruyama; Y. Hirano; Y. Taneda; M. Inoue; T. Fujii (2004). "Development of ion attachment mass spectrometry and its applications" (in Japanese). Bunseki Kagaku 53 (6): 475-489. doi:10.2116/bunsekikagaku.53.475. 
  • M. Nakamura, K. Hino, T. Sasaki, Y. Shiokawa and T. Fujii. "In situ analysis of perfluoro compounds in semiconductor process exhaust: Use of Li+ ion-attachment mass spectrometry". doi:10.1116/1.1376704. 
  • Fujii T.; Selvin P.C.; Sablier M.; Iwase K.. "Lithium ion attachment mass spectrometry for on-line analysis of trace components in air: direct introduction". doi:10.1016/S1387-3806(01)00469-9. 
  • T. Ishiguro, A. Matsunami, K. Matsumoto, K. Kitagawa, N. Arai, A. K. Gupta. "Mass Spectrometric Detection of Ionic and Neutral Species During Highly Preheated Air Combustion by Alkali Element Ion Attachment". Journal of Engineering for Gas Turbines and Power. doi:10.1115/1.1473158. 

[edit] External links

Languages