Integral of secant cubed

From Wikipedia, the free encyclopedia

One of the more challenging indefinite integrals of elementary calculus is

\int \sec^3 x \, dx = \frac{1}{2}\sec x \tan x + \frac{1}{2}\ln|\sec x + \tan x| + C.

[edit] Derivation

This antiderivative may be found by integration by parts, as follows:

 \int \sec^3 x \, dx = \int u\,dv

where


\begin{align}
u &{}= \sec x, \\
dv &{}= \sec^2 x\,dx, \\
du &{}= \sec x \tan x\,dx, \\
v &{}= \tan x.
\end{align}

Then


\begin{align}
\int \sec^3 x \, dx &{}= \int u\,dv \\
&{}= uv - \int v\,du \\
&{} = \sec x \tan x - \int \sec x \tan^2 x\,dx \\
&{}= \sec x \tan x - \int \sec x\, (\sec^2 x - 1)\,dx \\
&{}= \sec x \tan x - \int \sec^3 x \, dx + \int \sec x\,dx.
\end{align}

Next we add \scriptstyle{}\int\sec^3 x\,dx to both sides of the equality just derived:


\begin{align}
2 \int \sec^3 x \, dx &{}= \sec x \tan x + \int \sec x\,dx \\
&{}= \sec x \tan x + \ln|\sec x + \tan x| + C.
\end{align}

Then divide both sides by 2:

\int \sec^3 x \, dx = \frac{1}{2}\sec x \tan x + \frac{1}{2}\ln|\sec x + \tan x| + C.

[edit] Higher odd powers of secant

Just as the integration by parts above reduced the integral of secant cubed to the integral of secant to the first power, so a similar process reduces the integral of higher odd powers of secant to lower ones. This is the Secant Reduction Formula, which follows the syntax:

 \int \sec^n{cx} \, dx = \frac{\sec^{n-2}{cx} \tan {cx}}{c(n-1)} \,+\, \frac{n-2}{n-1}\int \sec^{n-2}{cx} \, dx \qquad \mbox{ (for }n \ne 1\mbox{)}\,\!

Alternatively:

 \int \sec^n{cx} \, dx = \frac{\sec^{n-1}{cx} \sin {cx}}{c(n-1)} \,+\, \frac{n-2}{n-1}\int \sec^{n-2}{cx} \, dx \qquad \mbox{ (for }n \ne 1\mbox{)}\,\!

[edit] See also

Languages