Image:Intouch Triangle and Gergonne Point.svg

From Wikipedia, the free encyclopedia

Intouch_Triangle_and_Gergonne_Point.svg (SVG file, nominally 250 × 350 pixels, file size: 20 KB)

Wikimedia Commons logo This is a file from the Wikimedia Commons. The description on its description page there is shown below.
Commons is a freely licensed media file repository. You can help.
Description

Diagram to shown the construction of the intouch, or contact, triangle (red) and the Gergonne Point (green) of a triangle (black). The blue circle is the incircle, and the blue point, I, is the incentre of the original triangle.

Source

Self-Made using Inkscape.

Date

08/05/2007

Author

Inductiveload

Permission
(Reusing this image)
Public domain I, the copyright holder of this work, hereby release it into the public domain. This applies worldwide.

In case this is not legally possible:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.


Afrikaans | Alemannisch | Aragonés | العربية | Asturianu | Български | Català | Česky | Cymraeg | Dansk | Deutsch | Eʋegbe | Ελληνικά | English | Español | Esperanto | Euskara | Estremeñu | فارسی | Français | Galego | 한국어 | हिन्दी | Hrvatski | Ido | Bahasa Indonesia | Íslenska | Italiano | עברית | Kurdî / كوردی | Latina | Lietuvių | Latviešu | Magyar | Македонски | Bahasa Melayu | Nederlands | ‪Norsk (bokmål)‬ | ‪Norsk (nynorsk)‬ | 日本語 | Polski | Português | Ripoarisch | Română | Русский | Shqip | Slovenčina | Slovenščina | Српски / Srpski | Svenska | ไทย | Tagalog | Türkçe | Українська | Tiếng Việt | Walon | ‪中文(简体)‬ | ‪中文(繁體)‬ | zh-yue-hant | +/-


File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeDimensionsUserComment
current20:53, 8 May 2007250×350 (20 KB)Inductiveload ({{Information |Description=Diagram to shown the construction of the intouch, or contact, triangle (red) and the Gergonne Point (green) of a triangle (black). The blue circle is the incircle, and the blue point, I, is the incentre of the original triangle.)
The following pages on the English Wikipedia link to this file (pages on other projects are not listed):